Как не ошибаться. Сила математического мышления - [13]

Шрифт
Интервал



Или напоминать по форме спину одногорбого верблюда.



Или иметь сильно осциллирующую форму[31]{20}.



В любом случае, если эта кривая направлена вверх в одном месте, она непременно развернется вниз в другом. Существует такая вещь, как чрезмерная мера шведскости. Ни один экономист не станет спорить с этим утверждением. Кроме того, сам Лаффер подчеркивал, что многие социологи понимали это задолго до него. Лаффер прекрасно осознавал, что его кривая не позволяет определить, является ли экономика той или иной страны обремененной слишком высокими налогами в данное время. Именно поэтому он не привел на своем рисунке никаких конкретных показателей. Когда во время слушаний в Конгрессе{21} один из участников задал вопрос о местоположении точки оптимального уровня налогообложения, Лаффер признал: «Я не могу определить этот уровень, но могу сказать, какими должны быть его характеристики, сэр». Кривая Лаффера говорит только о том, что при определенных обстоятельствах снижение налоговых ставок может привести к увеличению налоговых поступлений, однако определение этих обстоятельств требует выполнения глубоко продуманной, трудной эмпирической работы – работы, описание которой не поместится на салфетке.

С кривой Лаффера все в порядке, не совсем хорошо обстоит дело с тем, как ее используют. Последовавшие за дудочкой Ванниски политики стали жертвой старейшего ложного силлогизма, присутствующего в его книге:

Вполне возможно, что снижение налогов приведет к увеличению объема государственных доходов.

Мне хотелось бы, чтобы снижение налогов привело к увеличению объема государственных доходов.

Таким образом, это именно тот случай, когда снижение налогов приведет к увеличению объема государственных доходов[32].

Глава вторая

Локально прямая, глобально кривая

Наверное, вы не думаете, что вам нужен профессиональный математик, который объяснит, что не все линии прямые. Однако линейные рассуждения присутствуют повсюду. Вы прибегаете к ним каждый раз, когда утверждаете, что если хорошо иметь нечто, то лучше иметь этого еще больше. Именно так рассуждают политические крикуны: «Вы поддерживаете военные действия против Ирана? Тогда, полагаю, вы предпочли бы осуществить сухопутную операцию против любой страны, которая лишь косо посмотрит в нашу сторону!» В то же время звучит и такое: «Хотите поддерживать взаимодействие с Ираном? Наверное, вы также считаете, что и Адольфа Гитлера просто неправильно поняли».

Почему такие рассуждения столь распространенны? Ведь даже малейшее умственное усилие с нашей стороны позволит осознать их ошибочность. Почему вообще у кого бы то ни было может хотя бы на мгновение возникнуть мысль, что все линии прямые, когда совершенно очевидно обратное?

Одна из причин заключается в следующем: в каком-то смысле они действительно прямые. История эта начинается с Архимеда.

Метод исчерпывания

Чему равна площадь данного круга?

В современном мире это настолько стандартная задача, что ее можно включать в SAT[33]. Площадь круга равна πr², а в нашем случае радиус равен 1, значит, площадь этого круга равна π. Однако две тысячи лет назад вопрос был открытым и настолько важным, что привлек внимание Архимеда.



Почему вопрос площади окружности оказался настолько сложным? Во-первых, на самом деле древние греки не считали π числом, как считаем мы. В их понимании все числа были целыми, то есть такими, с помощью которых можно что-то подсчитать: 1, 2, 3, 4… Однако теорема Пифагора[34] – первый большой прорыв в древнегреческой геометрии – превратила всю их систему счисления в руины.

Перейдем к следующему рисунку.



Теорема Пифагора гласит, что квадрат гипотенузы (сторона прямоугольного треугольника, которая нарисована здесь по диагонали и не проходит через прямой угол) равен сумме квадратов двух других сторон, или катетов. В данном примере квадрат гипотенузы равен 1² + 1² = 1 + 1 = 2. Это означает, что гипотенуза длиннее 1, но короче 2. Проверяется без всяких теорем – просто на глаз. Сам факт, что длина гипотенузы не представляет собой целое число, не был проблемой для древних греков. Может быть, мы просто измеряли все не в тех единицах. Если мы выберем такую единицу длины, чтобы длина катетов была равна 5 единицам, тогда вы с помощью линейки легко проверите, что в таком случае длина гипотенузы составит почти 7 единиц. Почти – но все-таки немного больше, поскольку квадрат гипотенузы равен:


5² + 5² = 25 + 25 = 50,


но если длина гипотенузы составляла бы 7 единиц, квадрат гипотенузы был бы равен 49.

А если мы взяли бы катеты длиной 12 единиц, длина гипотенузы была бы равна почти 17 единиц, но все же немного короче, поскольку 12² плюс 12² равно 288, что незначительно меньше чем 17², равное 289.



Примерно в V столетии до нашей эры один из представителей пифагорейской школы сделал потрясающее открытие: не существует способа измерить равнобедренный прямоугольный треугольник таким образом, чтобы длина каждой его стороны представляла собой целое число. Современный человек сказал бы, что «квадратный корень из 2 – это иррациональное число», то есть число, которое нельзя представить в виде соотношения двух целых чисел. Но пифагорейцы так не говорили. Разве могли они сказать нечто подобное? В основе их представлений о количестве лежала идея о соотношении целых чисел. Следовательно, в их понимании длина гипотенузы, как оказалось,


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.