Как мы видим? Нейробиология зрительного восприятия - [24]
Почему это короткое заключение заслуживает особого внимания? Оказалось, в нем крылся важный ключ к разгадке того, как работает сетчатка. Зачем сетчатке нужны целых 29 типов амакриновых клеток? Ответ напрашивался сам собой: в сетчатке происходит гораздо больше обработки информации, чем считалось раньше. Амакриновые клетки генерируют основной выход для ганглионарных клеток, которые являются последним звеном цепи перед отправкой зрительных сообщений в головной мозг. Если амакриновые клетки так разнообразны, значит, сообщения должны быть такими же разнообразными. Это был важный шаг вперед к пониманию того, как работает зрительное восприятие.
Пока мы занимались амакриновыми клетками, наши коллеги изучали другие компоненты микросхемы сетчатки. Главным пробелом в нашей базе знаний были биполярные клетки. Как вы помните, биполярная клетка получает синаптический вход от нескольких фоторецепторных клеток и передает выходной сигнал через амакриновую клетку в ганглионарную. Биполяры являются важнейшим элементом сетчатки. Если удалить из сетчатки все амакриновые клетки, после некоторой перестройки она все равно сможет функционировать благодаря ганглионарным клеткам с транзиторным и устойчивым ответами, хотя изображение будет не таким контрастным и пропадет избирательность в отношении направления. Другими словами, человек без амакриновых клеток все равно будет видеть, но его зрение окажется расплывчатым и замедленным. Если убрать биполярные клетки, сетчатка сможет сообщать мозгу только о наступлении дня и ночи благодаря примитивной функции, выполняемой подгруппой органически светочувствительных ганглионарных клеток.
Все вы слышали о научных прорывах, когда новое открытие или идея внезапно, подобно молнии среди ясного неба, меняли целые области науки. Но гораздо чаще наука движется вперед путем постепенного приращения: по мере накопления данных возможность превращается в вероятность, которая в конце концов трансформируется в факт. Так было и в случае с нашим пониманием биполярных клеток.
Первые системные исследования с регистрацией электрической активности биполярных клеток, проведенные Акимити Канеко, Фрэнком Верблином и Джоном Даулингом, показали существование четырех типов клеток: с транзиторными on- и off-ответами и устойчивыми on- и off-ответами. Казалось логичным предположить, что эти четыре физических типа биполярных клеток соответствуют четырем аналогичным типам ганглионарных клеток.
Но, как и в случае амакриновых клеток, имелись весомые основания подозревать, что это далеко не все разновидности биполярных клеток, которые существуют в сетчатке. В середине 1990-х гг. исследованием биполярных клеток занимались четыре – пять лабораторий, и по их оценкам количество типов таких клеток варьировалось от четырех до девяти. Мы с моей лабораторией присоединились к этой работе довольно поздно с тайной надеждой на то, что накопленная другими база знаний позволит нам понять организацию биполярных клеток. Но, как оказалось, эта база знаний включала в себя слишком много несистематических данных в духе коллекционирования бабочек: небольшая выборка клеток здесь, небольшая выборка там. Поэтому наш набор вопросов был совершенно иным. Во-первых, существуют ли типы биполярных клеток, которые не удалось обнаружить с помощью ранее использованных методов окрашивания? Во-вторых, существует ли среди биполярных клеток разделение на основные, доминирующие группы и малочисленные группы вспомогательных клеток? Или же все типы биполярных клеток более-менее равны?
Чтобы ответить на вопрос, мы объединились с Элио Равиолой. Некоторое время назад он провел потрясающую серию экспериментов с окрашиванием клеток сетчатки, но эти снимки пылились в нижнем ящике его рабочего стола[15]. Один из его студентов провел предварительный анализ, но Элио решил не продолжать работу, потому что, будучи перфекционистом, остро осознавал несовершенство оборудования. В частности, он считал, что ему удалось окрасить далеко не все биполярные клетки.
У нашей лаборатории имелось два важных преимущества. Во-первых, метод фотозаполнения, который позволял получить надежную и всеобъемлющую выборку биполярных клеток. Во-вторых, у нас была Маргарет Макнил, которая к тому времени стала мастером трехмерной визуализации нейронов. Сделанные ею снимки были нашей тайной гордостью. Мы, нейроанатомы, любим красивые фотографии нейронов – нам кажется, что в них кроется что-то мистическое, открывающаяся нашему взору частица Истины.
Наконец, у нас имелся еще один ценнейший набор данных для идентификации клеток: снимки биполярных клеток, в которые были микроинъектированы маркерные молекулы после того, как были изучены их электрические ответы. Эта работа была проделана нашим другом Рэем Дашё из Алабамского университета. Знание того, как клетки реагируют на свет, было важным дополнением, поскольку реакции клеток оказались такими же разнообразными и характерными, как и их формы. Каждый из трех методов – окрашивание, фотозаполнение и микроинъекции – имел свою специфику, и мы надеялись, что ни одному типу клеток не удастся ускользнуть от всех трех детекторов. Итак, объединив все три вида данных, мы с уверенностью пришли к выводу, что существует целых 13 типов биполярных клеток. Вот они, нарисованные рукой Элио:
На момент написания этой версии статьи мы сосредоточили внимание на нереальных деталях из русла «научной фантастики». Естественные науки особенно безжалостны к пренебрегающим их законами. Специальное замечание для упускающих из виду факт, по ряду причин не включенный в общеобразовательную программу: любой закон состоит из трех частей. Верхушка айсберга — словесное выражение закона, его формулировка (вода кипит при 100 градусах по Цельсию). Вторая, менее заметная, часть — область действия закона (какая именно вода, при каком именно давлении)
Дэвид Лэнг, известный английский кавказовед, на основе археологических отчетов и материалов исторических исследований воспроизводит религиозные представления, быт древних племен, населявших территорию Грузии. Лэнг ведет свое насыщенное яркими красками подробное повествование из глубины веков до периода, который считается золотым веком в истории Грузии.David M. LangTHE GEORGIANS.
Нам предстоит познакомиться с загадочным племенем рудокопов, обитавших около 2–4 тысячелетий назад в бассейне реки Россь (Западная Белоруссия). Именно этот район называл М. В. Ломоносов как предполагаемую прародину племени россов. Новые данные позволяют более убедительно обосновать и развить эту гипотезу. Подобные знания помогают нам лучше понять некоторые национальные традиции, закономерности развития и взаимодействия культур, формирования национального характера, а также единство прошлого и настоящего, человека и природы.http://znak.traumlibrary.net.
В книге в очень доступной форме описаны физические свойства Земли как планеты, так и места где мы живем.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.