Гравитация. Последнее искушение Эйнштейна - [83]
Скорее всего, тёмная энергия не сможет вставить физике такие же большие палки в колёса, как тёмная материя, потому что и общая теория относительности, и квантовая теория предсказывают существование вакуумной энергии (пускай никто и не понимает, как эти предсказания сочетаются друг с другом).[279]
Итак, нам не хватает множества эмпирических сведений о Вселенной. Может быть, есть необходимость и в новой масштабной идее? «Наша система поразительно верна во многих аспектах, — отмечает Аркани-Хамед. — Но очевидно также, что мы ошибаемся в чём-то важном. Следующий шаг потребует от нас революционных мыслей». Как однажды сказал Джон Уилер, «за всем этим наверняка стоит настолько простая и прекрасная идея, что, когда мы поймём её, пускай через десять, сто или тысячу лет, мы спросим у себя: разве могло быть иначе?».
Берман напоминает, что, хотя необычное движение Урана и объяснялось существованием предсказанного Леверье Нептуна, с Меркурием эта схема не сработала. Потребовалась новая идея: фундаментальное изменение самой концепции гравитации. «Тёмная материя действительно может быть причиной аномалий в движении звёзд и галактик, — говорит Берман, — но, может быть, нам снова придётся поменять концепцию».[280]
Нужна ли нам новая идея?
Прямо сейчас где-то на Земле новому Эйнштейну может прийти в голову мысль, которая позволит свести все наши знания воедино и совершить революцию в физике. Но, как показывает история, одинокого гения для этого может быть недостаточно.
Теория относительности Эйнштейна действительно была результатом работы одного блестящего учёного (хотя и сам Эйнштейн иногда говорил: «Какой из меня Эйнштейн?»). Но, как замечает Аркани-Хамед, для революции в физике одного человека недостаточно. Чтобы создать квантовую теорию, два десятка учёных трудились почти 25 лет. Стандартная модель физики частиц потребовала примерно такого же состава участников и времени. Соответственно, очень вероятно, что более глубокая теория, чем общая теория относительности, будет похожа на своих предшественниц и будущие историки науки не прибавят к ряду «Ньютон, Эйнштейн и…» третье имя.
Аркани-Хамед ожидает, что в нашем видении мира произойдёт ещё более существенная перемена, чем квантовая революция 1920-х годов. При этом он проводит параллель с появлением, развитием и признанием квантовой теории. Первым шагом в новом направлении стало открытие Планком кванта в 1900 году. Затем в 1913 году датский физик Нильс Бор использовал это открытие, чтобы по-новому объяснить строение атома. Наконец, в 1927 году была создана самостоятельная квантовая теория, построенная на твёрдых научных основаниях. «Я думаю, что сейчас мы где-то на середине пути, — говорит Аркани-Хамед. — По меркам квантовой теории на дворе примерно 1917 или 1918 год».
Неизведанная страна
«Самое потрясающее время для того, чтобы быть физиком, наступило после 1920-х, — считает Аркани-Хамед. — Начиная с древних греков, каждое поколение людей спрашивало себя, откуда появилась Вселенная и что представляют собой пространство и время. Но людям прошлого требовалось ответить на множество других вопросов, прежде чем они могли перейти к этим. Мы же сумели на них ответить. Теперь перед нами стоят новые важнейшие вопросы».
По словам Аркани-Хамеда, это исключительный момент в истории фундаментальной физики. Впервые мы имеем систему, позволяющую нам задаваться фундаментальными вопросами, и поразительные экспериментальные средства (например, БАК) для ответа на них. «Мы поднялись к базовому лагерю на склоне Эвереста и видим перед собой вершину», — говорит Аркани-Хамед.
Сколько времени пройдёт, прежде чем мы достигнем цели? По мнению Аркани-Хамеда, «возможно, нам хватит результатов всего лишь пяти экспериментов. С другой стороны, возможно, их получение займёт у нас 500 лет. Но я так не думаю, я настроен оптимистично».
Более глубокая теория расскажет нам о рождении Вселенной, о том, как возникли пространство, время и всё остальное, и, самое важное, о том, почему они существуют. Кроме того, говоря словами Эйнштейна, она ответит на вопрос, имелся ли у Бога выбор, когда он создавал мир.
Подобная теория не только даст нам глубочайшие знания о нашей реальности, но и наделит нас техническим владычеством над ней. Объединение электрической и магнитной силы Максвеллом в 1863 году в конце концов привело к созданию специальной теории относительности и квантовой теории. Последняя, можно сказать, стала основой современного мира, дав нам лазеры и компьютеры, смартфоны и ядерные реакторы. Технологии, использующие квантовую теорию, составляют около 30% ВВП США.
Теория Максвелла также предсказала существование радиоволн, а потому сделала нашу планету миром коммуникаций, где данные, движущиеся картинки и бесшумная болтовня миллиардов людей постоянно передаются по воздуху. Ни Максвелл, ни его современники не могли предсказать подобного. Если бы жители XIX века увидели телевизор, Интернет или мобильный телефон, они, скорее всего, посчитали бы их не технологическими артефактами, а творениями дьявола.
Кто знает, что может дать нам углублённая теория Эйнштейна. «Я бросаю вызов гравитации!» — заявляла Мэрилин Монро. Кто знает, может, и мы сделаем то же самое. Возможно, мы получим власть над пространством и временем, способность создавать «кротовые норы», строить космические корабли или машины времени. «Мы будем создавать целые Вселенные в своих лабораториях», — мечтает Аркани-Хамед.
Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.