Гравитация. Последнее искушение Эйнштейна - [81]

Шрифт
Интервал

В первой работе Эйнштейн, Борис Подольский и Натан Розен писали о квантовом феномене запутанности и (ошибочно) отмечали, что подобное «жуткое дальнодействие» кажется настолько бессмысленным, что лишь подтверждает неполноту и неправильность квантовой теории.[275] Во втором труде Эйнштейн и Розен рассказывали, что в пространстве-времени существуют особые короткие пути, позволяющие сократить дистанцию, и что их существование допускается общей теорией относительности.[276] Сегодня они известны нам под именем «кротовые норы». Этот термин предложил американский физик Джон Уилер, также давший название чёрным дырам. Дыра в яблоке позволяет червяку быстро попасть с одной стороны фрукта на другую, а не ползти по поверхности. Точно так же и «кротовая нора» может помочь космическому путешественнику срезать путь по Вселенной. Войдя в неё с одной стороны и преодолев, возможно, лишь пару метров, он сможет выйти в совершенно другой галактике.

По словам Малдасены и Сасскинда, связи, которые учёные называют «кротовыми норами», представляют собой эквиваленты запутанности. Иными словами, если две частицы находятся в состоянии запутанности, между ними формируется микроскопическая «кротовая нора». Итак, «кротовые норы» в пространстве-времени и квантовая запутанность могут быть всего лишь различными способами описания одной и той же реальности.

Если запутанность возникает из-за существования микроскопических «кротовых нор» в пространстве-времени и такие норы важны для самого его существования, значит, уменьшение запутанности нарушит саму ткань пространства-времени, что и доказал Ван Раамсдонк. Итак, ответом на вопрос «Из чего сделано пространство?» могут быть «кротовые норы» или квантовая запутанность. Выбирайте, что вам нравится больше. В конце концов, если верить Малдасене и Сасскинду, это одно и то же.

Поразительная дуальность

Когда Малдасена продемонстрировал, что теория квантового поля на горизонте пятимерной Вселенной проявляется внутри неё как общая теория относительности, выяснилось, что одну и ту же физическую ситуацию можно описать по-разному. Существование таких дуальностей иногда помогает решить, казалось бы, безнадёжную задачу, просто подойдя к ней с другой стороны.

Типичной дуальностью теории струн является тот факт, что физика в сверхмалых и сверхбольших масштабах проявляет себя совершенно одинаково. Эта T-дуальность объясняется тем, что струны могут двигаться или обматываться вокруг дополнительного пространственного измерения, обмениваясь при этом импульсом. Благодаря этому в микро- и макромире физические законы проявляют себя одинаково.

Ключевым следствием из этой дуальности является то, что в сверхмалых масштабах физические параметры, например сила притяжения, не увеличиваются до бесконечности, как предсказывал Эйнштейн в своей теории гравитации. Вместо этого они держатся в тех же рамках, что и в макромире. Интуитивно это кажется логичным, ведь длина струн конечна, а так как их нельзя сжать до нулевого объёма, это позволяет избежать и предположения о сингулярности как начале Вселенной.

Разумеется, дуальности встречаются не только в теории струн. Их можно найти и в других областях физики, таких, например, как квантовая теория, известная своим корпускулярно-волновым дуализмом. На самом деле разделение корпускулярного и волнового подхода к мельчайшим строительным блокам Вселенной было актуальной темой для обсуждения только на начальных этапах существования квантовой теории (и ещё остаётся для научно-популярной литературы, например для этой книги). После создания последовательной квантовой теории в середине 1920-х годов о корпускулярно-волновом дуализме забыли. Квантовые механизмы Шрёдингера и Гейзенберга оперируют математическими объектами вроде волновых функций, которые не являются ни частицами, ни волнами и для которых в наших словарях нет слов, а в реальной жизни — аналогий.

Корпускулярно-волновой дуализм показывал, что учёные ещё не приблизились к адекватной квантовой теории. Точно так же и дуальности в теории струн демонстрируют её неполноту. «Мы ещё не дошли до конца, — говорит Берман. — В истинной теории дуальностей не будет». Но как же нам её найти?

В поисках Нигде

Аркани-Хамед полагает, что существует несколько стратегий поиска более глубокой, фундаментальной и истинной теории. Самая очевидная состоит в том, чтобы составить список всех предположений, которые имеются у учёных на данный момент, и постепенно вычёркивать их одно за другим, пока лучшее из них не трансформируется в то, что нужно. «Однако история показывает, что обычно такая тактика не работает», — отмечает Аркани-Хамед.

По какой-то причине теории в физике похожи на матрёшки. Внутри каждой красивой куклы находится ещё одна, такая же красивая, а внутри каждой изящной и непротиворечивой теории — более глубокая, но не менее изящная. Так что сделать из одной теории другую, более развитую, вряд ли получится. Природа не позволит этого. «Законы физики на любом из уровней совершенны. Но спуститесь на уровень ниже, и они окажутся ещё более совершенными», — замечает Аркани-Хамед. Единственный способ перейти от одного к другому — это сделать шаг в темноту. Как говорил Ньютон, за всеми великими открытиями стояли дерзкие догадки.


Еще от автора Маркус Чоун
Твиты о вселенной

Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.


Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.