Гравитация. Последнее искушение Эйнштейна - [12]

Шрифт
Интервал

Галлей обернулся к загадочному хозяину жилья, который сидел на кушетке, ожидая объяснений, зачем его гость приехал издалека. Галлей откашлялся и задал свой вопрос: «Предположим, что сила притяжения к Солнцу обратно пропорциональна квадрату расстояния до него. По какой кривой тогда должны двигаться планеты?».[43]

«Разумеется, по эллипсу», — ответил Ньютон без всяких колебаний.

Ошеломлённый Галлей спросил, откуда Ньютону это известно.

«Я это рассчитал», — сказал Ньютон.

Однако сколько он ни рылся в своих записях и стопках бумаг, он никак не мог найти подтверждение своим словам. В итоге Ньютон пообещал Галлею провести расчёты повторно и отослать их результаты в Лондон.

Ньютон был человеком слова. Через несколько месяцев Галлею пришло письмо, озаглавленное «О движении тел по орбитам». На девяти страницах, полных определений, уравнений и геометрических чертежей, Ньютон доказал, что тело, на которое действует закон обратных квадратов, движется по эллиптическому пути в соответствии с первым законом Кеплера. Кроме того, он продемонстрировал, что закон обратных квадратов для силы притяжения в сочетании с некоторыми базовыми принципами динамики объясняет не один, а все законы Кеплера. На самом деле Ньютон даже пошёл дальше и доказал, что первый закон Кеплера описывает лишь частный случай движения тела под воздействием силы притяжения в соответствии с законом обратных квадратов. В действительности же путь такого тела имеет форму не эллипса, а конического сечения.

Представьте себе конус, стоящий на основании, и острый нож, которым его можно разрезать. Если нож пройдёт сквозь конус параллельно поверхности, на которой он стоит, сечение будет иметь форму эллипса. Но если нож войдёт в конус с одной стороны, будет двигаться вниз и выйдет из конуса в месте соприкосновения его основания с поверхностью параллельно другой стороне, получившееся сечение будет параболическим. Если же нож войдёт в одну стену конуса вертикально, прорежет его насквозь до основания и выйдет с другой стороны, получится гипербола.

Эти три типа пути соответствуют трём разным ситуациям с точки зрения физики. Если тело, подчиняющееся закону обратных квадратов, не имеет достаточной скорости (или энергии), чтобы сопротивляться притяжению Солнца, оно навеки останется кружиться вокруг него по эллиптической орбите. Если энергии для «побега» достаточно, то оно будет двигаться по гиперболе, то есть просто улетит к звёздам и никогда не вернётся. Парабола — это путь тех тел, которые находятся на тонкой грани между первым и вторым состоянием. Такое тело сможет преодолеть притяжение Солнца, но лишь тогда, когда удалится от него на бесконечно большое расстояние, для чего на практике потребуется бесконечное количество времени.

Достижение Ньютона было поразительным. Он сумел сформулировать три закона движения совершенно иного характера, чем законы Кеплера. Несмотря на свою блестящую точность, законы Кеплера — это не что иное, как математическое описание движения планет вокруг Солнца. Ньютоновы же законы распространяются на движение любых тел, обладающих массой, от пушечных ядер и карет до планет. Они представляют собой положения о внутренней природе реальности, об отношениях между материей, силой и движением. Используя эти три закона и закон всемирного тяготения, Ньютон объяснил второй и третий законы Кеплера, а добавив к ним закон обратных квадратов — и первый закон Кеплера о движении планет по эллипсу. Кроме того, он сделал это громоздким языком геометрии, который могли понять его современники, вместо того чтобы записать всего пару строк формул, используя изобретённое им математическое исчисление.[44]

«Демонстрация Ньютоном закона эллипсов стала поворотным пунктом, границей между старым и новым миром, — говорит физик Дэвид Гудстейн из Калифорнийского технологического института в Пасадине. — Это одно из величайших достижений человеческого разума, которое можно поставить в один ряд с симфониями Бетховена, или пьесами Шекспира, или росписями Сикстинской капеллы кисти Микеланджело».[45]

«Начала», или Приручение Вселенной

Закончив читать письмо от Ньютона, Галлей был потрясён. Он понял, что держит в руках ключ к пониманию всей Вселенной.

Галлей немедленно написал Ньютону, умоляя того разрешить напечатать этот труд. Но перфекционист Ньютон ответил отказом. Он не был доволен своей работой и считал, что может улучшить её и расширить. Ему ещё было что сказать о принципах движения и законе всемирного тяготения, а главное — об их влиянии на окружающий мир.

Но Галлей пробил брешь в плотине, и вскоре её прорвало. Ньютон, столько времени ревностно охранявший собственные открытия, был готов поведать о них миру. В течение 18 месяцев он исступлённо работал, шлифуя свои идеи и представляя их в такой убедительной форме, чтобы читатель ни на секунду не мог усомниться в их правоте. Результатом этого труда стали «Philosophiæ Naturalis Principia Mathematica» — «Математические начала натуральной философии», опубликованные 5 июля 1687 года в трёх томах на 550 страницах. «Начала» не просто сделали Ньютона знаменитым. Они представили всеобъемлющую систему мироздания.


Еще от автора Маркус Чоун
Твиты о вселенной

Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.


Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.