Гравитация. Последнее искушение Эйнштейна - [10]

Шрифт
Интервал

Ньютон полагал, что значение этого притяжения всегда одинаково, как если бы вся материя на Земле была сконцентрирована в одной точке в её центре. Разумеется, он не мог это подтвердить, но, как говорил физик XX века Ричард Фейнман, можно знать больше, чем ты в состоянии доказать.[33] С Ньютоном дело обстояло именно так.

Сила его интуиции была попросту пугающей. После нескольких часов, или дней, или даже недель концентрации он ясно видел перед собой решение задачи во всей его неизбежности, очевидности и правильности. Но знать правду недостаточно — нужно ещё и убедить в ней остальных. А это означало, что ему нужно было проводить много часов за столом с пером и листами бумаги и облекать свою интуицию в слова, шаг за шагом объясняя собственные идеи на языке обычных людей, то есть математики.

Одна вещь была для Ньютона совершенно очевидна. Мир имеет форму мяча, разделённого на две части, а между ними располагается невидимая нить, соединяющая Луну с центром Земли. Благодаря этой симметрии гравитационные силы, с которыми все частицы материи в одном полушарии воздействуют на все частицы материи в другом, компенсируются гравитационными силами, исходящими от всех частиц другого полушария. Они поглощают друг друга. Соответственно, сила притяжения, с которой Земля влияет на Луну, будет направлена вдоль линии, соединяющей Луну с центром нашей планеты. Этого достаточно для начала, но до утверждения о том, что притяжение будет действовать таким образом, как если бы вся масса Земли была сконцентрирована в одной точке, ещё далеко. В 1666 году Ньютон понимал, что это так, но не мог доказать.

Или, возможно, мог, но никто из живших в 1666 году просто не понял бы его доказательства.

В мае 1666 года Ньютон изобрёл интегральное исчисление, которое назвал обратным методом флюксий. Это элемент математической магии, с помощью которого он смог суммировать значения силы, исходящей от бесчисленного количества бесконечно маленьких масс (на самом деле не только масс, а вообще чего угодно). Данный метод позволял доказать, что сила притяжения Земли равна той силе, которая исходила бы от неё, если бы вся её масса была сконцентрирована в центре. Но так как Ньютон изобрёл это исчисление недавно и никому о нём не рассказал, то и доказательство, полученное с его помощью, мог бы понять только он сам.[34] Вряд ли можно произвести хорошее впечатление на других, если сказать им: «У меня есть блестящее доказательство, но чтобы вы его поняли, для начала я должен обучить вас новой отрасли математики, которую я только что открыл».

Ньютон был сложным и противоречивым человеком, а потому против представления его закона всемирного тяготения в 1666 году могли иметься не только научные, но и психологические мотивы. Начну с того, что он был безумно скрытным. В грантемской школе над ним издевался местный хулиган, вероятно понявший, что Ньютон не такой, как все. Сам Ньютон вспоминает, как однажды этот мальчик ударил его в живот, а будущий учёный в ответ схватил его за ухо, отволок к церкви и приложил носом о стену.[35] Несмотря на победу в конфликте, после этого травмирующего опыта Ньютон начал бояться открытости — не только физической, но и интеллектуальной. Будучи крайне чувствительным человеком, Ньютон был не в состоянии рассматривать скептицизм своих коллег как часть научного процесса и считал его личными нападками глупцов на свои идеи. Он даже не пытался их защищать, так как был уверен в собственной правоте.

Ньютон был обидчивым, вспыльчивым и довольно мстительным человеком, и со многими своими коллегами он вёл долгую и изнурительную вражду. Когда читаешь высказывание Ньютона: «Мы строим слишком много стен и недостаточно мостов», хочется воскликнуть: «Кто бы говорил!». В его утверждении: «Я могу рассчитать движение небесных тел, но не безумие людей» — тоже чувствуется некоторая ирония.

«Такт — это искусство настоять на своём, не нажив себе врага», — говорил Ньютон. К сожалению, сам он так и не научился этому искусству. Он понимал, как нужно себя вести, но не умел действовать в соответствии с этим пониманием.

Разумеется, в каждом человеке есть свои противоречия. Живший в XX веке физик Георгий Гамов рассказывал о Ньютоне такую историю (которая, конечно же, может быть выдумкой).[36] Ньютон очень любил свою кошку и, чтобы та в любой момент могла попасть в его кабинет, вырезал в двери дыру. Затем у кошки появились котята. Что же сделал Ньютон? Вырезал в двери несколько дыр поменьше, по числу котят. Он был величайшим гением всех времён, но не смог понять, что все котята могли бы проходить через одну большую дыру.

Одержимость Ньютона секретностью могла иметь и более глубинные мотивы. Несмотря на то что он родился раньше срока и был слабым ребёнком, учёный дожил до преклонного возраста и до самой старости сохранил идеальное зрение и все зубы, кроме одного.[37] После смерти от него осталась коробка с бумагами, которые следовало опубликовать для потомков. Содержание этих документов было настолько скандальным, что священник, открывший коробку, чтобы бегло просмотреть бумаги, в ужасе захлопнул её.


Еще от автора Маркус Чоун
Твиты о вселенной

Маркус Чаун и Говерт Шиллинг, известные журналисты и популяризаторы науки, приглашают читателя на уникальную экскурсию по Вселенной, во время которой они в непринужденной форме ответят на самые принципиальные вопросы, связанные с окружающим нас миром. Начиная с самых простых: «почему ночью небо темное? почему звезды мерцают? что такое метеориты?», они внедрятся в круг самых сложных проблем космологии — как зарождалась Вселенная, как появляются сверхновые звезды, что такое квазары и черные дыры, что было до Большого взрыва, одни ли мы во Вселенной.


Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной

Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.