Геометрия, динамика, вселенная - [5]
Следует четко понимать, что в экспериментальном подходе в проверку пятого постулата «нет» и «да» весьма неэквивалентны. Метод, основанный на измерении суммы углов треугольника, может продемонстрировать отклонение от евклидовой геометрии, но не может доказать ее абсолютную справедливость. Действительно. какой бы треугольник в пределах наблюдаемой части Вселенной мы ни использовали в качестве образца, всегда можно утверждать, что его площадь мала, а точность наших приборов недостаточна для обнаружения отклонений от евклидовой геометрии. Все же известная польза от опытов Гаусса — Лобачевского (или аналогичных экспериментов) существует: если и есть отклонения от евклидовой геометрии, то они малы. Это вывод верен по крайней мере для масштабов, существенно превышающих привычные земные расстояния.
Итак, с одной стороны, евклидовость пространства допускает опытную проверку. В другом аспекте — евклидова геометрия как логическая система аксиом и теорем является лишь одной из возможностей. В дальнейшем мы продемонстрируем, что таких возможностей много, существенно больше, чем полагали основоположники неевклидовой геометрии. Тем не менее геометрия нашего пространства евклидова или почти евклидова. Почему природа выбрала этот вариант геометрии? На этот вопрос мы попытаемся ответить в гл.3.
Здесь же мы ограничимся замечанием, что среди всех логически замкнутых геометрий система Евклида является наиболее простой. Представляется, что, помимо простоты, эта геометрия также и наиболее естественна. Впрочем, подобное суждение лишь отражает субъективное мнение автора.
Для иллюстрации идеи неевклидовости пространства полезно привести достаточно простой пример. Пусть пространством является поверхность обычной двумерной сферы. Отвлечемся прежде всего от привычного образа сферы, вложенной в видимое трехмерное пространство, полагая сферу самостоятельным автономным объектом. Будем полагать, что «прямые» в таком сферическом пространстве — кратчайшие расстояния между двумя заданными точками на сфере, т. е. дуги большого круга. Положим, что бесконечным прямым в евклидовом пространстве соответствуют окружности на сфере. Здесь правильно будет говорить именно о соответствии, а не о тождестве, поскольку окружность на сфере обладает лишь одним свойством евклидовой прямой — отсутствием границ, но не обладает другим ее свойством — бесконечной протяженностью. Окружность на сфере безгранична, но конечна. Нетрудно, далее, убедиться, что через любую точку сферы, не находящуюся на данном большом круге, нельзя провести большой круг, не пересекающий данный, т. е. «параллельную». Иначе говоря, все «прямые» пересекаются.
Отметим также и другую важную особенность сферической геометрии. Если вырезать из сферы достаточно малую площадку, то геометрия будет имитироваться геометрией Евклида. Здесь полезно подчеркнуть, что подобный прием — вычленение из более сложной геометрии простейшей (в данном случае геометрии Евклида) с помощью выделения малой части полного пространства (здесь — сферы) — прием весьма распространенный и мы далее столкнемся с ним не раз.
После открытия одного варианта неевклидовой геометрии в последующем своем развитии геометрия как ветвь математики прошла весьма значительный путь. Были развиты многие другие неевклидовы геометрии (некоторые из них рассматриваются далее в разд. 6 и 7 этой главы). В подобной эволюции существенную роль сыграло внедрение в геометрию аналитических методов. По существу, геометрия слилась с алгеброй (точнее, с математическим анализом), оставив в своем арсенале лишь одну (хотя и важную) привилегию определенную форму мышления, в которой большую роль играют образность и наглядность.
3. ИДЕАЛИЗАЦИЯ И ПРИБЛИЖЕНИЕ
Ранее мы упоминали о некоторой неопределенности в основных понятиях геометрии: точка, линия и т. д. Превосходной иллюстрацией такой неопределенности является геометрический принцип двойственности. Суть этого принципа заключается в том, что если поменять местами наглядные образы точки и прямой, то в аксиомах и теоремах геометрии почти ничего не изменится.
Покажем некоторые простейшие примеры проявления принципа двойственности, для чего вначале приведем стандартные положения геометрии, а затем попросим читателя сделать усилие и в соответствующих фигурах совершить взаимную замену точек и прямых.
1. Через одну точку можно провести бесконечное число прямых. Любая прямая содержит бесконечное число точек.
Второе положение эквивалентно первому в следующем смысле: нужно слово «провести» заменить на «содержит». Такая замена имеет лишь семантический характер.
2. Через точку пересечения двух прямых a и b можно провести бесконечное число прямых, расположенных между прямыми a и b.
Ясно, что и это положение сохраняет свою силу при взаимной замене точек и прямых.
3. Треугольник — это фигура, образованная тремя прямыми, проходящими через три точки, не лежащие на одной прямой.
Легко проверить, что при взаимной замене точек и прямых получается привычный треугольник.
Число иллюстраций принципа двойственности можно существенно увеличить, он пронизывает всю геометрию. Отсюда можно сделать вывод: интуитивные понятия «точки» и «прямой» в значительной степени условны.
Прочитав эту книгу, вы не только пополните свои знания в области физики, но и, возможно, измените отношение к этому предмету, если раньше не очень-то его жаловали. Порой вы даже будете раздосадованы тем, что раньше этого не замечали и не применяли. А удивляться есть чему, поскольку физика буквально пронизывает нашу жизнь; она поистине вездесуща и объясняет многие явления и процессы, от приготовления пиццы, тостов и попкорна, до образования жемчужин, вращения Земли и строительства кораблей для плавания во льдах.
Космические угрозы жизни на Земле дают повод для осмысления таких грозных событий в прошлом, выявления их тенденций и перспектив. В книге космическое миропонимание базируется на предпосылке о свойствах и движущих силах Бытия. Творческие люди займутся аналитическим исследованием и сопоставлением традиционного и нового знания. Книга даст им пищу для ума. Наши исследования позволили выявить причины этих явлений. Кто из людей сумеет пережить километровые цунами, разрушительные землетрясения, разрушение атмосферы и природных ландшафтов, извержения вулканов и прочие ужасные явления? Подобные катастрофы в истории Земли происходили много раз, и они готовы обрушиться на нашу планету в ближайшее время.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Официальный отчёт о разработке атомной бомбы под наблюдением правительства США.The Official Report on the Development of the Atomic Bomb Under the Auspices of the United States Government.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.