Геометрия, динамика, вселенная - [3]
Трактовать современные представления о пространстве, не упоминая классические их образы — пространства Минковского и Римана, равносильно постройке большого здания на песке. Казалось необходимым кратко напомнить их свойства. Это, возможно, придало книге некоторую архаичность.
Как видно из предисловия, поводов для замечаний предостаточно. Автор будет благодарен читателям за деловое обсуждение затронутых им вопросов.
ГЛАВА 1. Г Е О М Е Т Р И Я
1. ЭМПИРИЧЕСКАЯ ГЕОМЕТРИЯ
Основы эмпирической геометрии, как науки о непосредственно наблюдаемом пространстве были заложены в глубокой древности: в Египте, Вавилоне и Греции. Итоги многовековых размышлений о количественных соотношениях между видимыми, непосредственно наблюдаемыми объектами были подведены в III в. до н. э. Евклидом. В течение почти 2.5 тысячелетий евклидова геометрия является одним из столпов школьной математики. практически в неизменной форме она дошла до нашего времени. Случай этот уникален. почти забыта физика Аристотеля, о математическом анализе Архимеда вспоминают лишь историки математики. Школьная же геометрия базируется на геометрии Евклида. Разница в основном лишь в методике изложения.
В чем причины поразительной живучести евклидовой геометрии? На наш взгляд, ответ на этот вопрос многозначен. Во-первых, она хорошо отображает простейшие количественные отношения форм реальных объектов, во-вторых, евклидову геометрию характеризует поражающая логичность и методическая завершенность, наконец, евклидова геометрия является превосходной основой для воспитания логического мышления на общедоступных примерах, имеющих широкие практические приложения.
Поучительно подробнее разобрать приведенные аргументы.
Геометрия (как указывает ее название) родилась из практических задач — измерения площадей земельных участков. Например, простейший вопрос об отношении площадей круга и квадрата нельзя решить без помощи геометрии (в рамках элементарной математики). Именно задачи о сравнении площадей земельных участков очень часто приходилось решать древним геометрам.
Отметим, что актуальность решения подобных задач сохраняется и поныне. Можно с уверенностью сказать, что читатель сталкивается с вопросом о длинах, площадях и объемах различных предметов. Основные понятия геометрии Евклида прочно вошли в нашу жизнь. Образы точки (например, в письме), плоскости (стены комнат) и объемов)дома, в которых мы живем) — наша повседневная действительность.
Евклид (точнее, его геометрия) в достаточно общем виде решил одну из важнейших практических проблем: количественного сравнения реальных объектов с разными формами. Созданная им геометрия была облечена в столь безукоризненную изящную форму, что актуальная для современности проблема «практического внедрения» была решена без задержек.
Несомненно, что «живучести» геометрии Евклида и ее быстрому «внедрению» способствовала ее адекватность кинематике абсолютно твердых тел. Неизменность их формы при перемещениях оптимально описывается в рамках евклидовой геометрии.
Подчеркнем далее, что вместе с геометрией Евклида в математику пришла абстракция. Для геометрии (по крайней мере в ее привычной формулировке) безразлично, сравниваются ли, например, объемы однородных предметов (двух комнат) или различных (например, гаража и автомашины). Геометрия как часть математики отвлекается от сущности объекта исследования. И в этой особенности имеются как сильные, так и слабые стороны.
Сила традиционной геометрии — в ее общности, универсальности. Слабость — в абстрагировании, создающем предпосылки для размытия основополагающих понятий геометрии, размытия, затрудняющего их сопоставление с реальными объектами, явлениями или процессами. До определенного времени этому обстоятельству не придавали серьезного значения, однако, когда наступила пора подвергнуть геометрию критическому переосмысливанию, высветилась эта слабая сторона геометрии. Возникла парадоксальная ситуация: самая точная и, по-видимому, самая наглядная наука — геометрия базируется на понятиях, не поддающихся точным определениям. Чтобы оправдать такое сильное утверждение, полезно напомнить некоторые «школьные» истины.
Учитель, начиная обучение геометрии, произносит слова: «Точка — объект, лишенный протяженности, линия — объект, характеризуемый длиной, но лишенный ширины» — и затем иллюстрирует эти определения, отмечая мелом на доске точку и проводя линию. Однако, размеры такой точки ~ 1 мм, ширина линии также ~ 1 мм — символ точечности? Это утверждение в значительной степени базируется на авторитете учителя.
Если постараться, можно, используя тонкое перо, свести размеры «точки» или «ширины» линии до ~0.1 мм, но и эта величина не соответствует геометрическому определению точки или линии.
Опираясь на весьма тонкие оптические методы, можно уменьшить размеры точки до 10**-10 см. Данные о рассеянии некоторых элементарных частиц свидетельствуют, что их размеры ~<10**-16 см. Однако и в этом случае не исчезает «проклятый» вопрос: можно ли объекты, характеризуемые столь малыми величинами, полагать «точками»?
Те же трудности возникают при попытках эмпирически воспроизвести другое основное понятие геометрии — прямую линию. Обычно полагают, что эталоном прямой является луч света, распространяющийся в пустом пространстве. Однако в соответствии с основными принципами оптики и квантовой механики ширина пучка света по порядку величины равна длине волны λ, а это значение невозможно свести к нулю.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.