Геометрия, динамика, вселенная - [28]

Шрифт
Интервал

С другой стороны, из принципа неопределенности следует, что радиус действия сил, обусловленных частицей-переносчиком ~HP/mc. Для электродинамики это означает, что электромагнитные силы — дальнодействующие. Их радиус r|≈HP/m|||||c при m||||| = 0 равен бесконечности. Этот факт

GAMMA GAMMA для электростатики следовал из простых физических соображений (см. выше).

Ввиду исключительной важности калибровочного принципа мы здесь наметим другой вывод уравнения электродинамики в рамках квантовой теории.

В квантовой механике состояние представляется волновой функцией Ψ. Вообще говоря, функция Ψ — комплексное число; среднее значение какой-либо динамической величины A равно интегралу

--\

\ * = \ Ψ| (x) A Ψ (x) dx, (47)

\

\

\-

x — точка в пространстве Минковского. Ясно, что значение величины инвариантно относительно преобразования

i ALPHA PSIG'(x) — > e||||||| Ψ (x). (48)

Инвариантность величины - следствие тождества i ALPHA — i ALPHA e||||||| * e|||||||| = 1 и того, что комплексно-сопряженная.

* * функция Ψ| (x) преобразуется по закону Ψ| (x) — > — i ALPHA * e|||||||| Ψ| (x). Следовательно, состояние системы,

* которое определяется произведениями Ψ| A Ψ, инвариантны относительно преобразований (48), которые характеризуются изменениями фазы ALPHA. Существенно, что в приведенном примере ALPHA = const (x). Поэтому преобразование (48) называется глобальным фазовым (калибровочным) преобразованием.

В известном смысле глобальное фазовое преобразование не согласуется с основным принципом теории относительности конечностью скорости передачи информации. Действительно, в нашем распоряжении нет возможности согласовать этот принцип с синхронизацией какой-либо величины (в том числе и фазы ALPHA) во всем бесконечном пространстве. Здесь не случайно сделана оговорка «в известном смысле», так как на практике обычно рассматриваются конечные области пространства. Однако принципиальный вопрос остается. Поэтому целесообразно обобщить инвариантность (48), требуя, чтобы фаза ALPHA зависела от положения системы ALPHA = ALPHA (x) ≠ const (x), а функция Ψ преобразовывалась по закону

i ALPHA(x) PSIG'(x) — > e|||||||||| Ψ (x). (49)

Инвариантность такого типа называется локальной калибровочной инвариантностью. Оказывается, что требование уравнений динамики относительно локальной калибровочной инвариантности однозначно определяет уравнения поля.

Остановимся сначала на уравнениях электродинамики. Как известно, ее уравнения (уравнения Максвелла или Дирака) определяются значением функций (полей) и их первыми производными. Выше отмечалось, что физические величины не зависят от значения фазы ALPHA. Однако эта независимость сохраняется для производных лишь при условии ALPHA=const(x), т. е. при глобальных преобразованиях. В общем случае (ALPHA=ALPHA(x)) производная

∂ Ψ i ALPHA(x) ∂ Ψ(x) —--- — > e|||||||||| [------ + ∂ x ∂ x

∂ ALPHA (x) + Ψ (x) —------] (50)

∂ x

и, следовательно, неинвариантна относительно локальных калибровочных преобразований.

Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов

A|'(x) — > A|(x) + ∂ ALPHA (x) / ∂ x, (51) ю ю

с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51).

С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые.

Калибровочные преобразования (49), (51) — необходимые и достаточные условия уравнений электродинамики.

Сделаем в заключение три важных замечания.

1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т. е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского.

2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат.

3. Таким образом, можно установить эквивалентность следующих утверждений:

уравнения движения (поля) — калибровочно инвариантны,

заряд в замкнутой системе сохраняется,

силы в статическом случае дальнодействующие,

масса частицы переносчика взаимодействия m|||||=0.

GAMMA

Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m ≠ 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.