Геометрия, динамика, вселенная - [27]

Шрифт
Интервал

1 2 Суммарное поле FI на расстоянии r можно представить в общем виде:

FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r)+FI |(e|,e|,r). (42)

1 2 1 1 2 2 3 1 2

Произведем калибровочное преобразование, соответствующее каждому из зарядов:

FI'[(e|+e|), r] — > FI[(e|+e|), r] + b,

1 2 1 2

FI'(e|,r) — > FI |(e|,r) + b, (43)

1 1 1

FI'(e|,r) — > FI |(e|,r) + b.

2 2 2

Уравнения (42) и (43) совместны, если FI(e|,e|,r) = — b = const(r), что соответствует глобальному

1 2 калибровочному преобразованию. Иначе говоря, из него следует принцип суперпозиции:

FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r), (44)

1 2 1 1 2 2

который также отражает слабость взаимодействия.

Мы до сих пор рассматривали систему из двух частиц. Однако вследствие принципа суперпозиции все выводы нетрудно обобщить на статическую систему, состоящую из любого числа частиц.

Таким образом, электростатика, базирующаяся на законе Кулона, — следствие калибровочной инвариантности. Очевидно (к этому мы привыкли из школьного курса физики) и обратное утверждение: глобальное калибровочное преобразование следствие закона Кулона. Калибровочная инвариантность взаимосвязана с электростатикой. Далее мы проиллюстрируем общность взаимосвязи динамики и калибровочной инвариантности.

Остановимся на другом важнейшем следствии калибровочной инвариантности. Опираясь на факт существования функции FI(x), которая определяет работу при перемещении пробного тела из точки x| в точку x|, можно сделать вывод о

1 2 сохранении заряда (пока в рамках электростатики). Действительно, по определению, заряд — мера воздействия тела (в нашем примере тела отсчета) на силовое поле или мера реакции пробного тела на величину силового поля. Пусть по пути из точки x| в точку x| заряд пробного тела изменится, а

1 2 заряд тела отсчета останется неизменным. Тогда работа не будет определяться исключительно разностью FI(x|)-FI(x|). Аналогичное рассуждение можно провести, полагая, что заряд тела отсчета изменится.

Однако в силу принципа суперпозиции (см.(44)), если оба тела соприкоснутся, заряд с одного тела может перейти на другое тело. Принцип суперпозиции вполне консистентен переходу заряда от одного тела к другому при условии сохранения суммы зарядов.

Таким образом, мы продемонстрировали закон сохранения заряда для системы, состоящей из двух тел. Далее мы поясним этот закон в общем случае и в случае нестатических систем. До сих пор мы анализировали простейшую физическую ситуацию электростатику. Однако вид калибровочной инвариантности однозначно определяет и самые общие уравнения движения и форму квантовой теории полей. Здесь же мы лишь наметим аргументацию этого утверждения. Дело в том, что его доказательство в полном объеме требует хорошего знакомства с квантовой теорией поля. Но даже и на таком уровне весь комплекс вопросов, основанный на принципе калибровочной инвариантности, на наш взгляд, изложен в литературе (особенно учебной) неполно. И этот факт прискорбен. Хотя, по нашему мнению, аксиоматическое изложение физики невозможно, однако выявление основных принципов и дедуктивное ее изложение кажется весьма целесообразным как с дидактических позиций, так и с точки зрения выявления общих граней разнородных физических объектов и теорий. Сейчас же в учебной литературе (в том числе в курсах теоретической физики) калибровочный принцип излагается походя, как бы между прочим. В специальной же литературе, посвященной калибровочной теории, обычно затрагиваются не все аспекты этого принципа. Мы попытаемся дать лаконичное и поэтому не слишком строгое изложение основных сторон этого принципа.

Калибровочный принцип обуславливается типом частицы переносчика взаимодействия. Достаточным условием калибровочной инвариантности является равенство нулю массы частиц-переносчиков.

Рассмотрим классическое движение, которое, как известно, определяется уравнениями Лагранжа. Уравнения Лагранжа определяются вариацией лагранжиана, который должен быть функцией от скаляров, которые естественно являются релятивистскими инвариантами.

Рассмотрим простейшее калибровочное поле электромагнитное. Допустим, что электромагнитное поле представляется релятивистским 4-вектором A|. Тогда из

i векторов можно образовать только два типа скаляров

i i (скалярных произведений): eA|dx| и aA|A| (здесь индекс i

i i пробегает значения i=1,2,3,4; e,a — постоянны). Пусть все реальные физические величины инвариантны относительно калибровочного преобразования:

A|' — > A| + DLf/DLx|, (45) i i i

где f — некоторая произвольная функция при калибровочных преобразованиях от 4-координат. Тогда можно написать следующее равенство:

i ∂(ef) i eA| dx| + —--- dx| = eA|dx| + d(ef), (46)

i DLx| i i

i

где d(ef) — полный дифференциал от функции ef. Однако прибавление полного дифференциала к лагранжиану не изменяет уравнения движения. Замена же (45) в квадрате

i вектора A|A| приводит к изменению лагранжиана, и,

i i следовательно, член A|A| нарушает калибровочную

i инвариантность уравнений движения. Следовательно, лагранжиан

i не может содержать скаляры типа A|A|. В теории поля

i демонстрируется, что эти члены могут появиться в том случае, когда частицы — переносчики взаимодействия — характеризуются ненулевой массой. Следовательно, чтобы удовлетворить условию (46), достаточно, чтобы масса частицы-переносчика была бы строго равна нулю. В электродинамике такой частицей является фотон. Экспериментально установлено, что масса фотона m||||| < 4.5*10**-16 эВ/с**2, это в 10**21 раз меньше массы GAMMA самой легкой частицы — электрона. Естественно полагать, что в соответствии с принципом калибровочной инвариантности m|||||=0. GAMMA


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.