Геометрия, динамика, вселенная - [20]
В математическом плане второй постулат специальной теории заключается в том, что время распространения света t между началом координат O и точкой (x, y, z) определяется уравнением
(ct)**2 — x**2 — y**2 — z**2 = 0 (20)
или в дифференциальной форме
(cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (21)
Соотношения (20) и (21) кардинально отличаются от связи между пространством и временем в классической физике (см. (12)). В последнем соотношении пространственные и временные координаты выступают как независимые переменные. Равенства (20) и (21) жестко связывают пространство и время. Пространство и время образуют единый физико-математический континуум. Иногда (особенно в период ранних дискуссий о теории относительности) наиболее ревностные ее апологеты утверждали, что Эйнштейн и Минковский полностью уравняли пространство и время. Это утверждение неверно. В соотношениях (20) и (21) временная и пространственные координаты выступают с разными знаками, что отражает их фундаментальное различие: время (в отличие от пространства) — направленный вектор: существует принцип причинности, различающий будущее и прошлое.
В соответствии с обозначениями дифференциальной геометрии выражение (21) записывается в форме
ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (22)
Второй постулат теории относительности можно сформулировать на геометрическом языке как утверждение, что для света (в пустоте) интервал ds**2 инвариантен относительно вращений и трансляций в 4-мерном континууме пространства-времени.
Инвариантность интервала ds**2 нетрудно обобщить и на случай тела и системы отсчета, движущейся со скоростью v≠c. Из опыта известно, что скорость света в пустоте максимальна. Поэтому это неравенство следует уточнить так: v
Рассмотрим две инерциальные системы координат, движущиеся со скоростью v друг относительно друга. Из (22) следует, что если в одной системе координат ds=0, то и в другой ds'=0. Рассмотрим общий случай: v≤c. Поскольку ds и ds' бесконечно малые одинакового порядка и при v — > c выполняется (22), то и в общем случае ds и ds' могут отличаться лишь постоянным множителем. Из изотропии и однородности пространства следует, что этот множитель равен 1`. Следовательно, интервал
ds**2 = (cdt)**2 — dx**2 — dy**2 — dz**2 = const (23)
относительно вращений и трансляций.[8]
Геометрия, в которой интервал имеет вид (23), называется псевдоевклидовой. Из равенства малых интервалов следует также и инвариантность конечных интервалов.
Инвариантность интервалов ds или s — математической отражение принципиально нового подхода к взаимосвязи пространства и времени. Пространство и время образуют единый математический континуум. Формально это выражается в том, что они составляют пространство Минковского.
Инвариантность интервала ds или s является основой для вывода важнейших следствий теории относительности. чтобы упростить дальнейшие рассуждения, мы ограничимся одной пространственной координатой x. Обобщение на трехмерное пространство (x, y, z) не представляет труда, все сделанные далее выводы при этом сохраняются.
≡=РИС. 4
Отметим прежде всего, что теория относительности существенно изменяет наши повседневные представления о прошлом, будущем и настоящем. Из-за конечности скорости света c причинно-следственные связи определены лишь при значении интервала s≥0. Чтобы представить себе наглядно неопределенно неопределенность ситуации при s<0, допустим, что в момент чтения книги в отдаленной части галактики произошел взрыв звезды, а читатель никак не ощутил этот взрыв и не имеет возможности получить о нем какую-либо информацию. Это типичный пример, отражающий ситуацию при s<0.
Графически можно можно все пространство-время (x,t) разделить на четыре области (рис. 4). Пусть две пересекающиеся линии соответствуют уравнениям x = ±ct. Тогда области внутри угла AOB соответствуют будущему; внутри угла COD — прошлому, а углам AOC и BOD — неопределенной ситуации, которая в общем случае зависит от движения системы отсчета. В этом смысле надо понимать сделанное выше замечание относительно тезиса Аристотеля (отсутствие настоящего). Настоящее, соответствующее одновременно происходящим в разных точках пространства событиям, есть понятие относительное. Оно зависит от движения системы отсчета.
Рассмотрим далее преобразование координаты x и времени t при переходе от одной системы отсчета (x,t) к другой (x',t'), движущейся со скоростью v относительно первой.
Условие, определяющее это преобразование, инвариантность интервала s=s'. Это условие определяет преобразование, которое является единственным с точностью до тривиального переноса начала системы отсчета
x' = x ch ψ + ct sh ψ,
(24) ct' = x sh ψ + ct ch ψ,
ψ — аналог угла поворота декартовой системы в евклидовом пространстве (ср. с преобразованием (13)). В формуле (24) ch и ch — гиперболические функции в отличие от обычных тригонометрических функций в соотношении (13). Эта разница определяется тем, что в евклидовом (двумерном) пространстве Inv = x**2 + y**2 — окружность, а в псевдоевклидовом пространстве Inv = t**2 — x**2 — гипербола.
Положим для простоты x=0. Это допущение не уменьшает общности рассуждений, однако сильно упрощает выкладки. Тогда
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.