Фрегат капитана Единицы - [2]
— Это не верёвки, — поморщился капитан, — а ванты. Они слишком толсты, чтобы называться линиями. Математики прямыми линиями называют совсем другое. Хочешь видеть настоящие прямые линии — взгляни на здешние телеграфные провода.
Я взглянул на берег, но никаких проводов не увидел, а капитан сказал, что, если я не увидел, это ещё не значит, что их нет. Он велел мне взглянуть в телескоп, и… что за штука! — между столбами в самом деле были натянуты провода — тоненькие-претоненькие! Капитан сказал, что они вовсе не имеют толщины, одну только длину. Их без этого волшебного телескопа и увидеть нельзя, а можно только вообразить.
Но как эти провода держатся на столбах? Оказалось, что, как и всякие провода, они держатся на изоляторах, которых тоже не видно. Потому что здешние изоляторы — это математические точки. У них нет ни длины, ни ширины, ни толщины!
Капитан покрутил ещё какие-то винтики, и я наконец увидел крохотные точки-изоляторы.
— Здорово вы мне всё это доказали… — начал я, но тут же осёкся, потому что с капитаном случилось что-то непонятное: он замахал руками, стал кусать воздух и долго не мог ни слова выговорить, а потом как закричит:
— Ничего я тебе не дока… я тебе пока… по-ка-зал! Что тут началось! Среди ясного неба сверкнула молния, загрохотал гром, Фрегат качнуло так, что я чуть не свалился в воду, а вода в бухте закипела, и из неё вылез бородатый старик в золотой короне. Он размахивал огромной вилкой и чуть не угодил мне в глаз.
— Кто тут собирается что-то дока… и так далее?! — завопил он. — Кто нарушает законы этой бухты?
Капитан и штурман упали на колени и, перебивая друг друга, заголосили:
— Ваше величество! Повелитель морей и океанов! Великий царь Нептун! Это же Нулик! Простите его! Он больше не будет!
Здравствуйте! Оказывается, я же во всём и виноват!
— Да, да, ты! — накинулся на меня Нептун. — Я запретил произносить в этой бухте слово «дока…» и так далее!
— А почему, ваше морское величество? — спросил я.
— О горе мне и всему подводному царству! — застонал старик. — Этот юнга, видно, не знает, что А — сокращённое название бухты Аксиома!
— Ваше величество, — сказал капитан, — что толку для него в названии бухты? Ведь он понятия не имеет об аксиоме!
Нептун почесал вилкой в бороде, сердито хмыкнул и неожиданно нырнул в воду.
Сообразив, что опасность миновала, я потребовал у капитана объяснения, но он сказал, что, пока мы не покинем бухты Аксиомы, ничего объяснять не станет.
Через несколько часов он наконец позвал меня и спросил, стану ли я дружить с тем, кто может ни с того ни с сего обидеть собаку или кошку. Само собой разумеется, не стану. А приду ли я на помощь другу, если он окажется в беде?
Что за вопрос! Конечно, приду! Никто не оставит друга в беде. Это всем ясно и не требует никаких доказательств!
— Вот, вот, вот! — обрадовался капитан. — В жизни так и объясняют значение слова «аксиома». Аксиома — то, что само собой разумеется и не требует доказательств. Но математики определяют аксиому несколько иначе. Учёные — народ недоверчивый, осторожный… Вместо «НЕ ТРЕБУЕТ доказательств» они говорят: «Аксиома — это то, что мы ПРИНИМАЕМ без доказательств».
— Что в лоб, что по лбу! Одно и то же!
— Ошибаешься, — возразил капитан, — совсем не одно и то же. По мнению математиков, аксиома не то что бы не требует доказательств, а её невозможно доказать. Потому приходится принимать её на веру.
Я спросил: как учёные придумывают эти аксиомы? Оказалось, они их не придумывают, а принимают после долгих наблюдений и опытов.
— Всякая наука начинается с аксиом, — заключил капитан. Так вот почему мы начали рейс из бухты А! Всё всегда начинается с начала!
Я спросил капитана: какую он знает самую простую математическую аксиому? Он ответил, что все аксиомы простые, и, в свою очередь, пожелал узнать, сколько, по-моему, прямых линий можно провести через две точки. Я догадался, что, наверное, не больше одной.
— Правильно! То, что ты сказал, и есть математическая аксиома, похвалил меня капитан. (Люблю, когда меня хвалят!)
— Теперь уж вовек не забуду, что между двумя точками можно провести только одну прямую! — обрадовался я. Только рано. Потому что тут снова появился штурман Игрек и заявил, что я сказал чепуху, что между двумя точками можно провести не одну, а сколько угодно прямых. Он взял лист бумаги, поставил две точки, а затем провёл между ними штук пятнадцать прямых! Оказывается, надо говорить не «МЕЖДУ двумя точками», а «ЧЕРЕЗ две точки». Вот как важно подбирать нужные слова, если хочешь, чтобы тебя правильно поняли!
ПРАВДИВАЯ ЛЕГЕНДА
У меня появился друг — младший кок. Его зовут Пи. Утром мы с ним поднялись на палубу и увидели маленький треугольный островок. У него три берега: один длиною в три метра, другой — в четыре, третий — в пять.
Капитан сказал, что это особенный треугольник. Он — прямоугольный, потому что один из трёх его углов прямой.
— А другие кривые? — засмеялся я.
— Кит знает что ты мелешь! — возмутился капитан. — Углы бывают прямые, острые и тупые. (При слове «тупые» он выразительно посмотрел на меня.) Острый угол всегда меньше прямого, а тупой — больше. Углы принято измерять в градусах.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.
Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру.