Фрактальная геометрия природы - [41]

Шрифт
Интервал

M(R)/[(4/3)πR>3].

После этого величину R устремляют к бесконечности, а глобальная плотность определяется как предел, к которому сходится в этом случае приблизительная плотность.

Однако обязательно ли глобальная плотность сходится к положительному и конечному пределу? Если так, то скорость такого схождения оставляет желать лучшего, и это еще мягко сказано. Более того, оцеки предельной плотности, будучи рассмотрены во временной перспектив ведут себя довольно странно. По мере того как увеличивалась глубина наблюдаемой в телескоп Вселенной, приблизительная плотность на удивление систематически уменьшалась. Согласно де Вокулеру [104], уменьшение всегда было ∝R>D−3. Наблюдаемый показатель D мно меньше 3 — в наилучшем приближении D=1,23.

Де Вокулер выдвинул тезис о том, что поведение величины приблизительной плотности отражает реальность, имея в виду, что M(R)∝R>D. Эта формула вызывает в памяти классический результат для шара радиуса R, вложенного в евклидово пространство размерности E, — объем такого шара ∝R>E. В главе 6 мы встречались с такой же формуле для кривой Коха, с той лишь разницей, что показателем там была не евклидова размерность E=2, а дробная фрактальная размерность. А в главе 8 мы получили формулу M(R)∝R>D для канторовой пьи на временной оси (здесь E=1).

Все эти прецеденты заставляют (причем весьма настойчиво) предположить, что показатель де Вокулера D представляет собой не что иное, как фрактальную размерность.

ВХОДЯТ ЛИ ЗВЕЗДЫ В ДИАПАЗОН МАСШТАБНОЙ ИНВАРИАНТНОСТИ?

Очевидно, что диапазон масштабной инвариантности, в котором удовлетворяет неравенству 0, не должен включать в себя объекты с явно определенными границами — такие, например, как планеты. А вот входят ли в него звезды? Согласно данным, полученным Уэбби ком и приведенным в [135], массу Млечного Пути внутри сферы рад уса R вполне можно представить в виде M(R)∝R>D, где величина экстраполируется с галактик. Мы, однако, продолжим наше обсуждение исключительно в галактических терминах.

СУЩЕСТВУЕТ ЛИ У ДИАПАЗОНА МАСШТАБНОЙ ИНВАРИАНТНОСТИ ВЕРХНИЙ ПОРОГ?

Вопрос о том, насколько далеко в сторону очень больших масштабов простирается диапазон, внутри которого 0, весьма противоречив, причем в последнее время он снова привлек к себе внимание. Многие авторы либо прямо заявляют, либо подразумевают, что этот диапазон допускает существование внешнего предела, соответствующего размерам скоплений галактик. Другие авторы выражают свое несогласие с этим мнением. Де Вокулер [104] утверждает, что «кластеризация галактик и, возможно, всех остальных форм материи является доминатной характеристикой структуры Вселенной во всех доступных наблюдению масштабах, причем нет никаких указаний на какое бы то ни было приближение к однородности; средняя плотность вещества неуклонно падает по мере того, как принимаются во внимание все большие объемы пространства, и у нас нет экспериментально подтвержденных оснований полагать, что эта тенденция не распространяется на значительно большие расстояния и меньшие значения плотности».

Дебаты между этими двумя школами, безусловно, весьма интересны и важны — для космологии, но не для нашего эссе. Даже если диапазон, в котором 0, имеет границы с обеих сторон, само его существование достаточно значительно для того, чтобы оправдать самое тщательное исследование.

В любом случае Вселенная (совсем как тот клубок ниток, о котором мы говорили в главе 6) располагает, по всей видимости, целым рядом различных эффективных размерностей. Если начать с масштабов порядка радиуса Земли, то первой встретившейся нам размерностью будет 3 (такова размерность твердых тел с четкой границей). Далее размерность падает до 0 (так как материя рассматривается как скопление изолированных точек). Далее идет весьма интересный участок, характеризуемый некой нетривиальной размерностью, удовлетворяющей неравенству 0. Если масштабно-инвариантная кластеризация продолжается до бесконечности, то на этом последнем значении D ряд эффективных размерностей и заканчивается. Если же существует конечный внешний порог, то к списку добавляется четвертый интервал размерностей, внутри которого точки теряют свою индивидуальность, и у нас на руках оказывается однородный газ, т. е. размерность снова возвращается к 3.

Самым же наивным представлением является то, согласно которому галактики распределены во Вселенной приблизительно однородно. В этом случае последовательность размерностей D сводится к трем значениям: 3, 0 и опять 3.

< Общая теория относительности утверждает, что при отсутствии материи локальная геометрия пространства стремится стать плоской и евклидовой, в то время как присутствие материи переводит ее в локально риманову. Здесь мы можем говорить о глобально плоской Вселенной, размерность которой равна 3 с локальными значениями D<3. Такой тип возмущений описан в [519], довольно туманной работе, автор которой приводит (с. 312) пример построения кривой Коха (см. главу 6), не ссылаясь при этом на самого Коха. ►

ВСЕЛЕННАЯ ФУРНЬЕ

Нам остается лишь построить фрактал, который удовлетворял бы правилу


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.