Фрактальная геометрия природы - [39]
Канторов брикет. Выберем в качестве исходного объекта для створаживания круглый корж, толщина которого значительно меньше его диаметра, и пусть тесто при створаживании разделяется на более тонкие коржи (освобождая место для соответствующей начинки). В результате получим этакий бесконечно экстраполированный «наполеон», который можно назвать канторовым брикетом.
Кольца Сатурна. Раньше считалось, что Сатурн окружен одним сплошным кольцом. Затем была открыта щель, разделяющая кольцо, потом еще одна, и наконец «Вояджер-I» обнаружил огромное количество таких щелей, в большинстве своем очень узких. «Вояджер» также установил, что кольца прозрачны: они пропускают солнечный свет... как и подобает множеству, названному нами «тонким и разреженным».
Таким образом, структура колец (см. [542], особенно иллюстрацию на обложке) являет собой, по всей видимости, совокупность близко расположенных окружностей, причем радиус каждой из этих окружностей соответствует расстоянию от некоторой точки отсчета до некоторой точки канторовой пыли. < Специальное название для такого множества — декартово произведение канторовой пыли на окружность. Вообще говоря, мы, наверное, получим более близкую к оригиналу картинку, если умножим окружность на пыль положительной меры, подобную тем, что рассматриваются в главе 15. ► Добавление в последнюю минуту: та же идея независимо от меня озарила и авторов [10], только они соотнесли ее с уравнением Хилла; в Примечании 6 к упомянутой работе содержится немало других соображений по существу вопроса.
Спектры. Хартер описывает в [199] спектры некоторых органических молекул; сходство этих спектров с канторовой пылью потрясает.
Рис. 121. Этот рисунок помогает яснее представить форму канторовой пыли посредством помещения ее среди остальных пылевидных множеств с N=2 и переменным значением r. На вертикальной оси откладывается либо само значение r, изменяющееся в интервале от 0 до 1/2 (внизу), либо размерность D в интервале от 0 до 1 (вверху). Верхняя граница обоих занавесов — это полный интервал [0, 1]. Любой горизонтальный срез на каждом из рисунков представляет собой какую-либо канторову пыль (стрелками показаны значения r=1/3 и D=0,6309).
Знаменитый греческий парадокс. Греческие философы полагали, что условием неограниченной делимости тела является его непрерывность. Очевидно, они ничего не знали о канторовой пыли.
Рис. 125. ФУНКЦИЯ КАНТОРА, ИЛИ ЧЕРТОВА ЛЕСТНИЦА (РАЗМЕРНОСТЬ D=1, РАЗМЕРНОСТЬ МНОЖЕСТВА АБСЦИСС ПОДСТУПЕНЕЙ D ~ 0,6309). КАНТОРОВО ДВИЖЕНИЕ
Функция Кантора описывает распределение массы вдоль канторова гребня, показанной на рис. 120. Многие называют график этой функции чертовой лестницей — она и впрямь ведет себя весьма странно, чтобы не сказать больше. Условимся, что и длина, и масса гребня равны 1; кроме того, каждой точке абсциссы R поставим в соответствие массу M(R), содержащуюся между 0 и R. Поскольку в паузах никакой массы нет, функция M(R) на этих интервалах остается постоянной. Учитывая, что створаживание никоим образом не влияет на общую массу гребня, можно заключить, что функция M(R) должна возрастать хоть где-нибудь между точкой с координатами (0, 0) и точкой с координатами (1, 1). Она и возрастает, только происходит это на бесконечно большом числе бесконечно малых и группирующихся в очень тесные скопления участков, соответствующих полученным нами пластинам гребня. Подробнее о странных свойствах функции Кантора можно прочесть в работе [216].
Регуляризующие отображения. Чертова лестница может похвастаться одним выдающимся свойством: с ее помощью можно отобразить вопиющую неоднородность канторова гребня в нечто пристойно однородное и равномерное. Взяв два различных интервала одинаковой длины на вертикальной оси графика обратной канторовой лестницы, мы обнаружим, что масса двух соответствующих наборов пластин одинакова — хотя на вид они, как правило, сильно отличаются.
Поскольку самым буйным цветом наука цветет именно на почве однородности, такие регуляризующие преобразования часто способны преодолеть преграду между фрактальной иррегулярностью и математическим анализом.
Фрактальная однородность. Распределение масс в канторовом гребне удобно полагать фрактально однородным.
Канторово движение. Как и в случае рассматриваемой в виде движения кривой Коха или движения Пеано, иногда удобно интерпретировать ординату M(R) как время. Тогда обратная функция R(M) будет определять положение точки при канторовом движении в момент времени t. Движение это в высшей степени дискретно. В главах 31 и 31 мы рассмотрим его линейные и пространственные обобщения.
Фрактальная размерность. Сумма ширины всех ступеней чертовой лестницы равна сумме высот всех этих ступеней — каждая из сумм равна 1. Следовательно, чертова лестница имеет совершенно определенную длину, равную 2. Кривая конечной длины называется спрямляемой, а ее размерность D равна 1. Из этого примера хорошо видно, что размерность D=1 вполне совместима с наличием бесконечного множества особых точек — при условии, что они достаточно редко разбросаны.
< Кое-кому, возможно, захочется назвать представляемую вашему вниманию кривую фрактальной, однако для этого нам придется пойти на менее строгое определение фракталов, которое бы наряду с размерностью
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.