Фрактальная геометрия природы - [42]
Начинаем построение с правильного восьмигранника, проекция которого представлена в центре рис. 141. Проекция показывает четыре угла квадрата, диагональ которого составляет 12 «единиц», и центр этого квадрата. Однако у восьмигранника есть еще две точки над и под нашей плоскостью на перпендикуляре, проведенном через центр квадрата, на одинаковом расстоянии в 6 «единиц» от этого центра.
Далее каждая точка заменяется шаром радиуса 1, который мы будем рассматривать как «звездный агрегат нулевого порядка». Наименьший шар, содержащий в себе все 7 первоначальных шаров, назовем «звездным агрегатом первого порядка». Агрегат второго порядка получается увеличением агрегата первого порядка в 1/r=7 раз и заменой каждого из новых шаров радиуса 7 копией агрегата первого порядка. Аналогичным образом, агрегат третьего порядка получается увеличением агрегата второго порядка в 1/r=7 раз и заменой каждого из шаров копией агрегата второго порядка. И так далее.
Короче говоря, при переходе между соседними порядками агрегации как число точек, так и радиус шаров увеличивается в 1/r=7 раз. Следовательно, для всякого значения R, которое является радиусом какого-либо агрегата, функция M>0(R), определяющая количество точек, содержащихся в шаре радиуса R, имеет вид M>0(R)=R. Для промежуточных R функция M>0(R) принимает меньшие значения (достигая R/7), однако, согласно общей тенденции, M>0(R)∝R.
Возможно также интерполировать агрегаты нулевого порядка последовательными этапами до агрегатов порядка —1, —2 и т. д. На первом этапе заменим каждый агрегат нулевого порядка копией агрегата первого порядка, уменьшенной в отношении 1/7, и так далее. При таком построении отношение M>0(R)∝R остается истинным для все меньших значений R. После бесконечной экстра- и интерполяции мы получаем самоподобное множество размерности D=ln7/ln7=1.
Кроме того, размерность D=1 объекта в 3-пространстве вовсе не обязывает его непременно быть прямой линией да и любой другой спрямляемой кривой. Ему даже не обязательно быть связным. Каждая размерность D совместима с любой меньшей либо равной по величине топологической размерностью. В частности, топологическая размерность бесконечной в обе стороны вселенной Фурнье равна 0, так как она является вполне несвязной «пылью».
РАСПРЕДЕЛЕНИЕ МАССЫ: ФРАКТАЛЬНАЯ ГОМОГЕННОСТЬ
Шаг от геометрии к распределению массы представляется мне как нельзя более очевидным. Если каждый звездный агрегат нулевого порядка нагрузить единичной массой, то масса M(R) внутри шара радиуса R>1 идентична величине M>0(R), а следовательно, ∝R. Кроме того, чтобы получить агрегаты порядка -1 из агрегатов нулевого порядка, необходимо разбить шар, который мы считали однородным и обнаружить, что он состоит из семи меньших шаров. На этом этапе правило M(R)∝R распространяется и на радиусы, меньшие единицы.
Рассматривая полученное распределение массы по всему 3-пространству, мы видим, что оно чрезвычайно неоднородно, хотя на фрактале Фурнье ему в однородности нет равных. (Вспомните рис. 120.) В частности, любые две геометрически одинаковые части вселенной Фурнье содержат одинаковые массы. Предлагаю такое распределение массы называть фрактально гомогенным.
< Предыдущее определение сформулировано в терминах масштабно-инвариантных фракталов, но концепция фрактальной гомогенности в общем случае гораздо шире. Она применима к любому фракталу, для которого положительна и конечна хаусдорфова мера в размерности D. Фрактальная гомогенность требует, чтобы масса, содержащаяся в множестве, была пропорциональна хаусдорфовой мере этого множества. ►
ВСЕЛЕННАЯ ФУРНЬЕ КАК КАНТОРОВА ПЫЛЬ. РАСШИРЕНИЕ Д0D≠1
Я надеюсь, что читателя не сбило с толку небрежное употребление фрактальной терминологии в начальных разделах этой главы. Очевидно, что Фурнье, сам того не осознавая, шел путем, параллельным пути своего современника Кантора. Основная разница заключается в том, что конструкция Фурнье вложена в пространство, а не в интервал на прямой. Для вящего усиления сходства достаточно заменить шарообразные агрегаты Фурнье на блоки (заполненные кубы). Каждый агрегат нулевого порядка становится блоком, длина стороны которого равна 1, и включает в себя 7 меньших агрегатов со стороной 1/7: центр одного из них совпадает с центром исходного куба, а остальные шесть касаются центральных подквадратов на гранях исходного куба.
Ниже мы рассмотрим, как получил значение D=1 из фундаментального физического феномена Фурнье, и как к тому же результату пришел Хойл. С геометрической же точки зрения, случай D=1 является особым, даже если на протяжении всего построения придерживаться формы восьмигранника и значения
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.