Фрактальная геометрия природы - [32]
То есть на всех этапах с нечетными номерами генератор располагается справа от кривой; получаемый в результате терагон представляет собой решетку из прямых, параллельных диагоналям инициатора. На всех же этапах с четными номерами генератор располагается слева от кривой; прямые, составляющие решетку получаемого при этом терагона, оказываются параллельными сторонам инициатора. Кривая асимптотически заполняет прямоугольный равнобедренный треугольник, причем исходный отрезок [0, 1] является гипотенузой этого треугольника.
Рис. 99. На рисунке изображено прохождение квадрата, полученное соединением двух прохождений Чезаро с инициаторами [0, 1] и [1,0]. (И здесь угол θ=90° заменен углом θ=85° для ясности построения.)
Самоперекрытие. Каждый отрезок в решетках, покрываемых терагонами Чезаро, покрывается дважды. Конструкция содержит не только самокасания, но и самоперекрытия.
«Эффективность» заполнения плоскости. Одно экстремальное свойство расстояния Пеано - Чезаро. Кривая Пеано с рис. 95 отображает отрезок [0, 1] на квадрат с диагональю [0, 1] иплощадью 1/2. Такая же фигура покрывается и кривой Пойа. Однако кривая Чезаро заполняет всего лишь прямоугольный равнобедренный треугольник с гипотенузой [0, 1] и площадью 1/4. Для того, чтобы покрыть весь квадрат, необходимо отобразить по Чезаро два отрезка, [1, 0] и [0, 1]. Таким образом, из двух рассматриваемых кривых кривая Чезаро оказывается менее «эффективной». Более того, кривая Чезаро вообще самая «неэффективная» кривая Пеано без самопересечений на квадратной решетке. Однако благодаря этому обстоятельству, она — видимо, в качестве компенсации — обладает одним замечательным свойством: левое или правое расстояния Пеано (см. с. 93) между точками P>1 и P>2 оказывается большим или равным квадрату евклидова расстояния между этими точками:
|L{P>1,P>2}|≥|P>1P>2|>2; |R{P>1,P>2}|≥|P>1P>2|>2.
Для других кривых Пеано разница между расстоянием Пеано и евклидовым расстоянием может быть как положительной, так и отрицательной.
Задача Какутани - Гомори. Какутани (источник — частная беседа) предлагает выбрать M точек P>m внутри единичного квадрата [0,1]>2 и рассмотреть выражение inf∑|P>mP>m+1|>2, в котором инфимум вычисляется по всем линиям, соединяющим точки P>m последовательно. Он доказывает, inf≤8, но полагает, что этот предел не является наилучшим. В самом деле, Р. Э. Гомори сообщает (источник — частная беседа), что он получил уточненный предел inf≤4. При доказательстве Гомори использует кривую Пеано-Чезаро следующим образом: (А) добавим к множеству точек P>m угловые точки квадрата, если они этому множеству еще не принадлежат; (В) расположим M точек P>m в порядке их первых посещений последовательностью из четырех кривых Пеано- Чезаро, построенных внутри квадрата вдоль его сторон; (С) убедимся, что удлинение цепочки на этапе (А) не повлекло за собой уменьшения ∑|P>mP>m+1|>2; D) убедимся, что каждое слагаемое |P>mP>m+1|>2 не уменьшается при замене его на |L(Z>m,Z>m+1)|; (Е) ∑|L(Z>m,Z>m+1)|=4. При использовании других кривых Пеано этапы (В) и (D) следует исключить.
РИС. 101 И 102. ПРОХОЖДЕНИЯ КВАДРАТА И ДРАКОНА
Генератор здесь тот же, что и для предыдущих кривых, однако незначительные, на первый взгляд, изменения в других правилах оказывают значительное влияние на результат.
Прохождение квадрата по Пеано, более поздний вариант.
Инициатор отрезок [0, 1], а второй, четвертый и шестой этапы построения выглядят следующим образом:
Эффективность. Экстремальное свойство. Эта кривая заполняет область, площадь которой равна 1, тогда как кривые на рис. 98 и 99, а также кривая дракона, которую мы рассмотрим ниже, покрывают лишь 1/2 или 1/4. Если терагоны лежат на прямоугольной решетке, покрываемая ими область не может превышать 1. Этого максимума она достигает лишь в случае терагонов без самопересечений. Иными словами, отсутствие самокасаний важно не только с эстетической точки зрения, а самокасающаяся кривая со срезанными точками самокасаний (как на рис. 95) не становится от этого эквивалентной кривой Коха без самопересечений.
Взяв только нечетные этапы построения данного прохождения квадрата и соединив средние точки последовательных отрезков терагонов (чтобы избежать самокасаний), мы возвратимся к кривой Пеано, вариант Гильберта.
Рис. 102. Кривая, заполняющая прямоугольную трапецию. Изменим генератор таким образом, чтобы он представлял собой ломаную, составленную из двух неравных отрезков под прямым углом друг к другу. Избегающее самопересечений построение аналогично построению кривой на предыдущем рисунке.
Дракон Хартера-Хейтуэя. (См. [162] и [95].) Инициатор — отрезок [0, 1], генератор — как в начале пояснения к рис. 98. Генератор поочередно занимает правое и левое положение относительно терагона. Единственное отличие от построения прохождения треугольника по Пойа заключается в том, что на всех этапах построения генератор помещается справа от начального отрезка кривой. Ниже показаны третий и четвертый этапы построения:
Последствия этого незначительного изменения выглядят весьма впечатляюще:
На этой иллюстрации нельзя различить саму кривую, мы видим лишь ее границу, которая называется кривой дракона. Таким образом, эта кривая Пеано имеет полное право называться прохождением дракона. Как и любая другая кривая Коха, инициатором которой служит отрезок [0, 1], дракон самоподобен. Кроме того, отчетливо видно, что дракон разделен на части, соединяющиеся между собой тонкими переходами. Эти части подобны друг другу, но не целому дракону.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.