Фрактальная геометрия природы - [31]

Шрифт
Интервал

) = эта решетка заполняет квадрат, площадь которого равна 2, причем плотность линий быстро возрастает по мере того, как k→∞ (вполне достаточный пример этого однообразного узора показан на рисунке рядом с исходным черным квадратом).

На трех верхних картинках двусмысленность самокасаний устранена путем срезания соответствующих углов с сохранением общей площади.

Если четвертый этап построения данной кривой изобразить в том же масштабе, то мы увидим лишь сплошной серый фон, однако увеличенное изображение одной четвертой части, получающейся в результате береговой линии, вполне можно проследить взглядом (рискуя, правда, заработать при этом морскую болезнь). Глядя на этот рисунок, понимаешь, что люди имеют в виду, когда говорят, что предельная кривая Коха заполняет плоскость.

Было бы замечательно, если бы мы смогли определить в этом случае предельный остров по аналогии с островами Коха в главе 6, однако здесь это, к сожалению, невозможно. Любая выбранная наугад точка почти наверняка будет бесконечно колебаться между сушей и морем. Терагоны на поздних этапах построения пронизаны бухтами или реками настолько глубоко и однородно, что суша и вода делят любой квадрат среднего размера x (такого, что η≤x≤1) практически пополам!

Интерпретация. Предельная кривая Пеано устанавливает непрерывное соответствие между прямой и плоскостью. Математическая неизбежность самокасаний — классический результат. Новым является тот факт, что самокасания играют важную роль в моделировании природных феноменов.

Дальний порядок. Не зная о нисходящих каскадах, ответственных за построение наших конечных кривых Пеано, можно только изумиться тому необычайному дальнему порядку, который позволяет этим кривым избегать не только самопересечений, но и самокасаний. Что касается последнего, то весь порядок вообще держится только на жесточайшей дисциплине: малейшее послабление — и все насмарку!

< А если совсем позабыть о дисциплине, то мы почти наверняка не получим ничего, кроме бесконечно повторяющихся самопересечений, поскольку полностью недисциплинированная кривая Пеано — это броуновское движение, о котором мы уже упоминали во второй главе и поговорим подробнее в главе 25.

Теорема Лиувилля и эргодичность. В механике принято представлять состояние сложной системы одной-единственной точкой в «фазовом пространстве». Известно, что в случаях применения к этому пространству уравнений движения каждая его область ведет себя следующим образом: ее протяженность (гиперобъем) остается инвариантной (теорема Лиувилля), однако ее форма меняется — область рассеивается и заполняет весь доступный объем с максимально возможной однородностью. Очевидно, что оба этих свойства находят отражение в том, как, с нашей легкой руки, ведет себя черный квадрат при построении кривой Пеано. Представляется интересным «копнуть» глубже и увидеть, что во многих упрощенных «динамических» системах, допускающих подробное изучение, каждая область рассеивается, трансформируясь во все удлиняющуюся и утончающуюся ленту. Интересно также было бы выяснить, не происходит ли дисперсия других систем по древовидным кривым Пеано вместо лент. ►

РИС. 98 И 99. КВАДРАТИЧНЫЕ ПОСТРОЕНИЯ КОХА С РАЗМЕРНОСТЬЮD=2: ПРОХОЖДЕНИЯ ТРЕУГОЛЬНИКА ПО ЧЕЗАРО И ПО ПОЙА И ИХ ВАРИАНТЫ

Простейшим генератором, какой только можно в этом случае вообразить, является ломаная, состоящая из N=2 равных отрезков, угол θ между которыми удовлетворяет условию 90°≤θ≤180°. В предельном случае θ=180° генератор представляет собой отрезок прямой; случай θ=120° (проиллюстрированный в пояснении к рис. 71) порождает (помимо прочих) троичную кривую Коха. Генератор для предельного случая θ=90° показан ниже:

Используя этот генератор, можно построить невообразимое множество различных кривых Пеано (различия обусловлены формой инициатора и способом помещения генератора на предшествующий терагон). На рис. 98-102 дано несколько примечательных примеров.

< Кроме того, в главе 25 с помощью рандомизации всех кривых Пеано с данными Nr мы получим самое что ни на есть броуновское движение. ►

Прохождение треугольника по Пойа. Инициатор отрезок [0, 1], генератор — как на рисунке вверху. Генератор поочередно занимает правое и левое положение относительно терагона, причем его положение относительно начального отрезка (правое или левое) также поочередно меняется. Ниже показаны третий и четвертый этапы построения:

Терагоны напоминают квадратные куски диаграммной бумаги, запихнутые внутрь прямоугольного равнобедренного треугольника, один из катетов которого и есть исходный отрезок [0, 1]. Предельная кривая проходит по всей внутренней области треугольника.

Рис. 98. Прохождение Пойя по прямоугольному неравнобедренному треугольнику. Изменим генератор таким образом, чтобы он состоял из двух неравных отрезков, расположенных под прямым углом друг к другу. Читателю (в качестве упражнения) остается лишь придумать, как в этом случае построить кривую, избегающую самокасаний.

Прохождение треугольника по Чезаро. Инициатор — отрезок [0, 1], генератор — тот же, что и для прохождения по Пойа. Два следующих этапа построения приведены ниже (для большей ясности построения угол


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.