Фрактальная геометрия природы - [29]
РЕКИ И ДРЕВОВИДНАЯ СТРУКТУРА ВОДОРАЗДЕЛОВ
Изучая всевозможные терагоны Пеано, я обратил внимание на то, что каждый из них представляет собой некоторую комбинацию из двух деревьев (или двух скоплений деревьев), допуская бесконечное разнообразие конкретных интерпретаций. Особенно хорошо эти деревья видны на «прохождении снежинки» — кривой Пеано моего изобретения (см. рис. 105). Глядя на рисунок, мы легко можем представить себе, что там изображено, скажем, скопление кустарников, растущих из нижней трети снежинки Коха и взбирающихся по ее стенкам. Другому эта картинка может показаться похожей на нарисованную плохо очиненным карандашом карту бассейна какой-нибудь большой реки — многочисленные мелкие притоки сливаются в более крупные и в конце концов вливаются в главную реку, протекающую вдоль нижней трети снежинки. Из последней интерпретации немедленно следует, что кривые, отделяющие реки друг от друга, составляют в совокупности древовидный водораздел. Разумеется, реки и водоразделы могут меняться местами.
Какой бы простой и очевидной ни казалась эта новая водораздельно- речная аналогия, она оказалась возможной только после того, как мы перестали считать кривые Пеано чем-то заведомо патологическим. В самом деле, если мы хотим, чтобы древовидная структура, составленная из рек исчезающей ширины, собрала всю воду с некоторого участка, ей просто не остается ничего другого, как проникнуть во все точки этого участка. Всякий, кто отправится прогуляться по берегам всех рек данной системы, совершит заполняющее плоскость путешествие. Не верите? Спросите у любого ребенка!
Вооружившись интуицией, подкрепленной рис. 104, мы с легкостью обнаружим аналогичные сопряженные конструкции во всех тера- гонах Пеано. Даже грубый остров с рис. 95 приобретает в этом свете некое осмысленное содержание. Пронизывающие его тонкие ленты воды нельзя принять за фьорды, как бы мы ни напрягали наше воображение, однако их вполне можно рассматривать как речную систему.
Когда из изучения рек вырастет настоящая наука, ее следует назвать потамологией — термин, созданный Морисом Парде. Однако, по трезвом размышлении, приходится признать, что изучение рек — это лишь часть более общей науки о воде, гидрологии, во владения которой на протяжении этого эссе мы еще не раз наведаемся.
НЕИЗБЕЖНЫЕ КРАТНЫЕ ТОЧКИ ДЕРЕВЬЕВ И, КАК СЛЕДСТВИЕ, ДВИЖЕНИЙ ПЕАНО
Неожиданно находят очевидное объяснение и многие математические свойства кривых Пеано. Чтобы объяснить кратные точки, предположим, что некто начинает движение вдоль берега реки, являющейся частью дерева рек Пеано, и движется вверх или вниз по течению, обходя даже самые маленькие притоки (причем чем уже приток, тем быстрее движение). Очевидно, что в конечном счете наш путешественник придет в точку, которая находится на другом берегу напротив точки его отправления. А поскольку в пределе река бесконечно узка, то он по существу вернется в начальную точку. Таким образом, кратные точки на кривой Пеано представляются неизбежными не только с математически логической точки зрения, но и с позиций здравого смысла. Более того, эти точки всюду плотны.
Неизбежно также, что некоторые точки он посетит более чем дважды, так как в местах слияния рек совпадают по меньшей мере три береговых точки. Если все слияния ограничиваются только двумя реками, нет необходимости учитывать более чем тройную кратность. С другой стороны, если мы согласны иметь точки более высокой кратности, можно обойтись и без тройных точек.
Все утверждения, высказанные в предыдущих абзацах, доказаны, и, поскольку доказательства весьма деликатны и вызвали в свое время немало бурных дискуссий, сами свойства можно было бы, по всей видимости, отнести к «техническим подробностям». Если бы не одно «но». Кто теперь будет продолжать настаивать, что чисто логический подход к упомянутым свойствам имеет хоть какие-то преимущества перед моим интуитивным подходом, основанном на здравом смысле?
Как правило, реки Пеано представляют собой не стандартные фигуры, но фрактальные кривые. Это весьма удачно для нужд моделирования, так как все, что говорилось в главе 5 относительно неспрямляемости географических кривых, в полной мере касается и берегов рек. Больше того, среди приводимых Ричардсоном данных имеются сведения и о таких государственных границах, которые частично проходят по рекам и границам водоразделов. А в цитате из Штейнгауза [539] реки и вовсе упоминаются открытым текстом. Что касается водосборных бассейнов рек, то каждый из них может быть окружен замкнутой кривой, напоминающей береговую линию и составленной из участков границы водораздела. Бассейн любой крупной реки представляет собой совокупность бассейнов более мелких рек и притоков, вдоль и поперек исчерченную этими самыми реками и притоками, однако для исчерпывающего описания столь сложной на первый взгляд структуры нам необходимы всего лишь несколько заполняющих плоскость кривых, ограниченных кривыми фрактальными.
ДВИЖЕНИЕ ПЕАНО И ПЕРТАЙЛИНГ
Возьмем оригинальную кривую Пеано (см. рис. 95) и представим величину t как число в системе исчисления с основанием
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.