Фрактальная геометрия природы - [34]
Теперь мы можем убедиться в том, что данная кривая Пеано действительно заполняет фигуру, ограниченную кривой Коха на рис. 75. Линия переменной толщины внутри кривой Коха на рис. 75 представляет собой результат пятого этапа настоящего построения.
Рис. 106, слева. Четвертый терагон кривой Госпера, перерисованный в виде границы между черной и белой областями.
Рис. 106, справа. Деревья рек и водоразделов. Изображены реки и водоразделы, проходящие по средним линиям черных и белых «пальцев» кривой, показанной на этом же рисунке слева.
Рис. 107, вверху. Мы взяли древовидную структуру рек и водоразделов, показанную на рис. 106 справа, и привели толщину линий в соответствие с их относительной значимостью в схеме Хортона-Штралера (см. [297]). В настоящем примере каждой кривой (и рекам, и водоразделам) назначается ширина, пропорциональная ее длине по прямой. Реки даны черным, водоразделы — серым.
Размерности. Каждая кривая Пеано определяет размерность D собственной границы. На рис. 95 и 98 указанная граница представляет собой просто квадрат. На последующих рисунках появляются драконова шкура и кривая-снежинка. Здесь же мы имеем дело с фрактальной кривой, размерность которой D~1,1291 и которая состоит отчасти из рек, отчасти из водоразделов. Все другие реки и водоразделы сходятся к кривой с фрактальной размерностью D=1,1291.
Франция. Тому, кто, будучи школьником, часто разглядывал карту бассейнов Луары и Гаронны, наши иллюстрации наверняка о многом напомнят.
Рис. 107, внизу. Дерево рек, построенное непосредственно с помощью каскада Коха. Когда сам генератор имеет древовидную структуру, он порождает при построении дерево. Пусть, например, генератор выглядит вот так:
Получаем еще один способ осушения внутренней области кривой Коха с рис. 75. (Ветви, расположенные у самых «истоков», были обрезаны.)
РИС. 109 И 110. ЗАПОЛНЯЮЩИЕ ПЛОСКОСТЬ ФРАКТАЛЬНЫЕ ДЕРЕВЬЯ, ПЕРЕКОШЕННАЯ СНЕЖИНКА И КВАРТЕТ
Заполняющие плоскость «речные» деревья, получаемые из некоторых кривых Пеано, могут быть получены и с помощью прямого рекурсивного построения. Ключом здесь служит генератор, который сам имеет древовидную форму. Простейший и скучнейший пример: генератор составлен из четырех отрезков, образующих фигуру, похожую на знак «+». В результате построения получим речное дерево кривой Пеано- Чезаро (см. рис. 99).
Перекошенная снежинка. Более интересного результата можно достичь, взяв в качестве инициатора отрезок [0, 1], а в качестве генератора — следующую фигуру:
Для начала обратим внимание на то, что отдельные реки порождаются генератором, который смещает среднюю точку отрезка (таким, например, как на рис. 71). Следовательно, всякая асимптотическая река имеет размерность D=ln2/ln√3=ln4/ln3. Это значение хорошо знакомо нам еще по снежинке Коха, однако кривая, которой мы намерены заняться теперь, — не снежинка, поскольку размещение генератора на прямолинейных отрезках следует иному правилу.
Если мы хотим, чтобы осталось место для рек, необходимо, чтобы положение генератора с каждым отрезком менялось с правого на левое и наоборот. Таким образом симметрия снежинки искажается, а новая область для заполнения реками заслуживает себе имя — перекошенная снежинка.
Вернемся к дереву рек. Его терагоны не перекрывают сами себя, но самокасаний здесь очень много. Неизбежен — и даже напрашивается — асимптотический вариант этой особенности, поскольку он вполне верно отражает тот факт, что иногда несколько рек начинаются в одной точке. Как мы увидим чуть позже, речные терагоны могут и вовсе обходиться без самокасаний. Рассматриваемый же речной терагон — как раз благодаря самокасаниям — представляет собой ({- неразборчиво заштрихованный обрывок гексагональной диаграммной бумаги в форме близкой фрактальной кривой.
Рис. 110, вверху. Речное дерево станет более явным, если стереть все участки реки, соприкасающиеся с истоком, и изобразить главную реку более жирной линией. Площадь бассейна такой реки составляет √3/2~0,8660.
Прохождение перекошенной снежинки. Построим кривую Пеано, инициатор которой имеет форму равностороннего треугольника, а генератор представляет собой ломаную линию, звенья которой равны и расположены под углом в 60° друг к другу. Это — крайний случай при M=3 из семейства генераторов, использованных при построении кривых на рис. 75 и 76, причем он значительно отличается от остальных случаев этого семейства. Подробнее см. в [95].
Можно легко убедиться, что дерево рек этой кривой Пеано совпадает с деревом, которое мы только что получили с помощью прямого построения. Длина стороны инициатора равна 1, а площадь, заполняемая соответствующей кривой Пеано, составляет √3/6~0,2886 (очень неэффективно!).
Квартет. Теперь рассмотрим другую кривую Коха вместе с тремя кривыми, заполняющими ее: одной кривой Пеано и двумя деревьями. Эти придуманные мною фигуры иллюстрируют еще одну весьма интересную тему.
Инициатором снова будет отрезок [0, 1], а генератор выглядит следующим образом:
Граница заполняемой области стремится в пределе к кривой Коха с размерностью D=ln3/ln√5=1,3652. Продвинутые терагоны границы и кривой Пеано составляют центр рис. 79; я назвал эту фигуру квартетом. Каждый «игрок», равно как и стол между ними, способен к самоподобному разбиению плоскости.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.