Фрактальная геометрия природы - [36]

Шрифт
Интервал

Предыдущее описание предполагает существование такого понятия, как относительное расположение пакетов k-го ранга внутри пакета k−1-го ранга. Распределение вероятностей этих относительных расположений, по всей видимости, не зависит от k. Очевидно, такая инвариантность говорит о самоподобии, а там и до фрактальной размерности недалеко, однако не будем спешить. Рассмотрения различных прецедентов, содержащиеся в настоящем эссе, нацелены, помимо прочего, как на обнаружение нового, так и на уточнение старого. Исходя из этих соображений, представляется оправданным несколько изменить исторический порядок и представить новое с помощью грубого неслучайного варианта стохастической модели ошибок Бергера - Мандельброта (см. главу 31).

ПРИБЛИЖЕННАЯ МОДЕЛЬ ПАКЕТОВ ОШИБОК: ФРАКТАЛЬНАЯ КАНТОРОВА ПЫЛЬC

В предыдущем разделе мы предприняли попытку построить множество ошибок, начав с прямой линии, представляющей временную ось, и вырезая все уменьшающиеся свободные от ошибок паузы. Возможно, для естественных наук такая процедура и внове, однако в чистой математике она используется довольно давно — по меньшей мере, со времен Георга Кантора (см. [207], особенно с. 58).

У Кантора (см. [62]) инициатором служит замкнутый интервал [0,1]. Термин «замкнутый» и квадратные скобки означают, что крайние точки принадлежат интервалу: такая запись уже использовалась в главе 6, однако до сих пор у нас не было необходимости указывать на это явным образом. Первый этап построения состоит в разделении интервала [0,1] на три участка и удалении открытой средней трети, которая обозначается ]1/3, 2/3[. Термин «открытый» и развернутые квадратные скобки означают, что крайние точки интервала в этот интервал не входят. Затем удаляются средние трети каждого из N=2 оставшихся отрезков. И так далее до бесконечности.

Получаемое в результате множество остатков C называется либо двоичным, поскольку N=2, либо троичным, поскольку исходный интервал делится на три части.

В общем случае количество частей, называемое основанием, обозначается буквой b, причем отношение между N-й частью множества и всем множеством определяется коэффициентом подобия r=1/b. Множество C называется также канторовым дисконтинуумом; чуть позже я предложу свой термин «канторова фрактальная пыль». И еще: так как точка на временной оси отмечает некое «событие», множество C представляет собой фрактальную последовательность событий.

СТВОРАЖИВАНИЕ, ТРЕМЫ И СЫВОРОТКА

В рамках термина, который Льюис Ричардсон применил к турбулентности, а мы позаимствовали для описания береговых линий и кривых Коха в главе 6, канторова процедура является каскадом. «Вещество», однородно распределенное вдоль инициатора [0, 1], подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала.

Среднюю треть, вырезанную из интервала [0, 1], мы будем называть трёма-генератором. Этот неологизм образован от греческого слова, означающего «дыра, отверстие» (дальним родственником этого слова является латинское termes «термит»). Это, пожалуй, самое короткое греческое слово из тех, что на сегодняшний день еще не обзавелись значительной терминологической нагрузкой.

В данном контексте тремы совпадают с паузами, однако в других примерах, с которыми мы встретимся позже, совпадения не происходит, поэтому и возникла необходимость в двух разных терминах.

По мере того, как опустошается «трема первого порядка», вещество сохраняется и перераспределяется с однородной плотностью по внешним третям, которые мы будем называть предтворогом. Здесь в действие вступают еще два вихря, и та же процедура повторяется на интервалах [0, 1/3] и [2/3, 1]. Процесс продолжается как ричардсонов каскад, стремясь в пределе к множеству, которое мы назовем творогом. Если длительность этапа пропорциональна размеру вихря, то общая длительность процесса конечна.

Для пространства, не занятого творогом, я предлагаю термин сыворотка (в совокупности получаем вполне полноценную простоквашу).

Предполагается, что эти термины будут использоваться не только в их математическом значении, но для выражения их физического смысла. Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится — в результате створаживания — чрезвычайно концентрированной.

Этимология. Слово «творог» происходит от древнеанглийского crudan «давить, жать, сильно толкать». Не следует думать, будто эта маленькая демонстрация эрудиции, позаимствованной у Партриджа [463], является абсолютно бесполезной — этимологические родственники творога несомненно интересуют нас с фрактальной точки зрения (см. гла- ву 23).

Обратите внимание на цепочку свободных ассоциаций: творог > сыр > молоко > Млечный Путь > Галактика (греч. “гала” переводится как «молоко») > галактики. Термин створаживание пришел мне в голову, когда я занимался как раз галактиками, и этимологическая подоплека «галактического створаживания» весьма меня заворожила.

ВНЕШНИЙ ПОРОГ И ЭКСТРАПОЛИРОВАННАЯ КАНТОРОВА ПЫЛЬ


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.