Флатландия. Сферландия - [107]
Аналогично гиперконус, основанием которого служит конус, можно рассматривать двумя различными способами. Его границей служат два конуса и некоторая часть, порожденная треугольником с одной фиксированной стороной. Вершина треугольника, противоположная фиксированной стороне, пробегает плоскую кривую, но лежащую в одном 3-пространстве с фиксированной стороной.
Граница гиперпризмы состоит из двух многогранников, служащих основаниями, и боковых призм. Основаниями боковых призм служат грани многогранников, лежащих в основании гиперпризмы. Боковые призмы примыкают друг к другу вдоль общих боковых граней.
Если основаниями гиперпризмы служат призмы, то ее боковая граница состоит из двух призм и набора параллелепипедов. Такую фигуру можно рассматривать как гиперпризму двумя способами. Две призмы, которые в одном случае являются боковыми, в другом служат основаниями. Все четыре призмы последовательно соединены друг с другом основаниями. Каждый из параллелепипедов двумя противоположными гранями примыкает к двум соседним параллелепипедам, а остальные его четыре грани примыкают к боковым граням; каждой из четырех призм. Если четыре призмы отсечь от параллелепипедов и провести разрез вдоль одного из общих оснований, то их можно развернуть в одном 3-пространстве. Если к тому же призмы были прямыми, то мы получим одну прямую призму. Параллелепипеды можно разъединить, проводя разрез вдоль одной из общих граней и так же развернуть их в одном 3-пространстве, при этом, если параллелепипеды были прямоугольными, мы получим одну прямую призму (параллелепипед). Взяв одну из больших призм, мы сможем приставить ее под углом к другой большой призме так, чтобы их общие грани совместились. Затем одну из призм можно будет обкатывать по другой призме, при этом все соответственные грани будут совмещаться. В исходной фигуре обе призмы были свернуты вокруг друг друга так, что каждая точка боковой поверхности одной из призм приходилась на соответствующую точку, принадлежащую боковой поверхности другой призмы, и обе призмы вместе замыкали внутри себя конечную часть четырехмерного пространства.
Если мы выберем из четырех призм четыре элемента, образующие параллелограмм, то все параллелепипеды мы получим, двигая этот параллелограмм параллельно самому себе. При этом вершины его будут описывать основания призм. Набор из четырех призм можно также получить, передвигая параллельно самим себе многоугольные основания. При этом вершины оснований будут описывать параллелограммы, вдоль которых параллелепипеды примыкают друг к другу. Таким образом, параллелограмм и многоугольник играют роль производящих элементов, причем каждый служит для другого направляющей при получении соответствующей части гиперпризмы.
Аналогичным образом можно построить гиперцилиндр с двумя цилиндрическими основаниями. Часть боковой поверхности гиперцилиндра состоит из двух цилиндров, соединяющих концы цилиндрических оснований, поэтому всю фигуру можно рассматривать как гиперцилиндр двумя способами. Из четырех цилиндров можно выбрать четыре элемента, образующие параллелограмм, а остальную часть боковой границы можно построить, двигая этот параллелограмм параллельно самому себе. При этом его вершины будут описывать основания цилиндров. Поскольку цилиндры можно получить аналогичным способом, двигая плоскую кривую параллельно самой себе вокруг любого из параллелограммов, то параллелограмм и замкнутая плоская кривая позволяют получить весь гиперцилиндр. При построении одной его части параллелограмм служит производящим элементом, а замкнутая плоская кривая — направляющей, при получении другой части роли элементов меняются.
Таким образом, гиперпризму, основаниями которой служат призмы, и гиперцилиндр с цилиндрическими основаниями можно рассматривать как частные случаи некоторого класса гипертел, допускающего следующие описания. Расположим два многоугольника, две замкнутые плоские кривые или многоугольник и плоскую кривую так, чтобы они пересекались, но не лежали в одном 3-пространстве. Их плоскости будут пересекаться лишь в той точке, где пересекаются сами кривые. Один многоугольник или одну кривую начнем двигать параллельно себе вокруг другой. При этом мы получим трехмерную фигуру в форме кольца (причем не только наружную поверхность, но и все внутренние точки фигуры). Двигая другой многоугольник или кривую вокруг первого, мы точно таким же образом получим вторую фигуру в форме кольца. Эти две кольцеобразные фигуры плотно примыкают друг к другу и образуют границу гипертела, внутри которой заключена конечная часть четырехмерного пространства. Такое гипертело можно назвать двойной призмой, призмоцилиндром или двойным цилиндром в зависимости от того, что мы выбрали вначале: два многоугольника, многоугольник и кривую или две кривые. Если плоскости двух производящих многоугольников абсолютно перпендикулярны, то мы получим прямую двойную призму. Аналогично можно получить и прямые фигуры остальных двух типов.
Если любую часть границы отделить от остальной и провести разрез вдоль одного из производящих элементов, то оставшаяся часть границы развернется в одном 3-пространстве, аналогичном нашему трехмерному пространству. Если плоскости двух производящих элементов абсолютно перпендикулярны, то каждая часть границы при развертывании в 3-пространстве превращается в прямую призму или в прямой цилиндр. В этом случае исходные фигуры можно описать иначе. Например, для того чтобы построить прямую двойную призму, достаточно взять две прямые призмы, выбрав их так, чтобы высота каждой из них совпадала с периметром другой призмы. Перегнув их относительно друг друга, мы можем совместить все соответствующие грани и получить трехмерное тело, внутри которого будет заключена конечная часть четырехмерного пространства. Аналогично можно построить прямой призмоцилиндр или прямой двойной цилиндр, взяв в одном случае призму и цилиндр, а в другом два цилиндра.
Этот научно‐фантастический роман считается полезным для людей, изучающих такие темы, как, например, понятия о других пространственных измерениях или гиперпространства. Как литературное произведение роман ценится из‐за сатиры на социальную иерархию Викторианского общества.Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали Флатландию необычайно популярной. Ее (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.«это лучшее введение в способ восприятия измерений, которое может быть найдено»Айзек Азимов.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Зачастую «сейчас» и «тогда», «там» и «здесь» так тесно переплетены, что их границы трудно различимы. В книге «Ахматова в моем зеркале» эти границы стираются окончательно. Великая и загадочная муза русской поэзии Анна Ахматова появляется в зеркале рассказчицы как ее собственное отражение. В действительности образ поэтессы в зеркале героини – не что иное, как декорация, необходимая ей для того, чтобы выговориться. В то же время зеркало – случайная трибуна для русской поэтессы. Две женщины сближаются. Беседуют.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Ленни потерпел аварию на неизвестной планете, к счастью аварийный маяк не пострадал и скоро за ним должны прилететь его ребята. А пока он решил осмотреть лес, где приземлился, и найти себе немного еды.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.