Флатландия. Сферландия - [109]

Шрифт
Интервал

Две плоские фигуры (например, два треугольника), если они лежат в одной плоскости, могут частично перекрываться, но пересекаться они будут лишь в том случае, если лежат в различных плоскостях. Аналогично два объемных тела (например, два куба), если они лежат в одном и том же 3-пространстве, могут частично перекрываться, но пересекаться они будут лишь в том случае, если лежат в различных 3-пространствах. В гиперпространстве мы встречаемся со следующими возможными случаями пересечения. Гипертело и 3-пространство пересекаются, образуя трехмерное тело. Два 3-пространства пересекаются по некоторой плоскости, три 3-пространства пересекаются по прямой, четыре 3-пространства пересекаются в одной точке, 3-пространство и плоскость пересекаются по прямой, 3-пространство и прямая пересекаются в одной точке и две плоскости пересекаются в одной точке. Если пересечение находится в бесконечности, то говорят, что такие элементы параллельны. Если два 3-пространства параллельны, то все фигуры или тела в одном 3-пространстве расположены на равных расстояниях от другого 3-пространства. В случае плоскостей существуют два случая параллельности, и параллельные плоскости либо абсолютно, либо неабсолютно параллельны в зависимости от того, расположены, ли они в одном и том же или в различных 3-пространствах (или в зависимости от того, как они пересекаются в бесконечности: по прямой или лишь в точке).

На плоскости к данной прямой в данной точке можно восставить лишь один перпендикуляр. В 3-пространстве можно провести бесконечно много перпендикуляров, образующих плоскость, перпендикулярную данной прямой, а в гиперпространстве бесконечное множество плоскостей, перпендикулярных данной прямой, образуют 3-пространство, перпендикулярное данной прямой. В четырехмерном пространстве 3-пространство может также быть перпендикулярным плоскости или другому 3-пространству. Говоря о перпендикулярных плоскостях в четырехмерном пространстве, следует различать два случая: неабсолютно перпендикулярные и абсолютно перпендикулярные плоскости. Отличаются они тем, что неабсолютно перпендикулярные плоскости лежат в одном и том же 3-пространстве, а абсолютно перпендикулярные плоскости не принадлежат одному 3-пространству. В последнем случае каждая прямая, лежащая в любой из двух плоскостей, перпендикулярна каждой прямой, лежащей в другой плоскости.

Положение точки на плоскости можно задать, указав, на каком расстоянии она находится от каждой из двух перпендикулярных прямых. Положение точки в нашем пространстве мы определим, если будет известно, на каком расстоянии она находится от каждой из трех взаимно перпендикулярных плоскостей, а положение точки в гиперпространстве будет определено, если мы зададим расстояния от этой точки до каждого из четырех взаимно перпендикулярных 3-пространств. В гиперпространстве эти расстояния мы будем измерять вдоль четырех взаимно перпендикулярных прямых, которые, если разбить их на пары, образуют шесть взаимно перпендикулярных плоскостей, а если выбрать из них всеми возможными способами тройки, определяют четыре взаимно перпендикулярных 3-пространства, о которых мы упомянули выше. В нашем пространстве плоскость определяется по крайней мере тремя точками. В гиперпространстве, для того чтобы определить 3-пространство, необходимы по крайней мере четыре точки. 3-пространство можно также определить при помощи двух непересекающихся прямых или при помощи плоскости и не принадлежащей ей точки.

Так же как части нашего пространства ограничены поверхностями, плоскими или искривленными, части гиперпространства ограничены гиперповерхностями (трехмерными), то есть плоскими или искривленными 3-пространствами. Гиперпространство содержит не только бесконечно много плоских 3-пространств, аналогичных нашему пространству, но также бесконечно много искривленных 3-пространств, или гиперповерхностей различных типов. Например, гиперсфера представляет собой замкнутую гиперповерхность, все точки которой находятся на равном расстоянии от ее центра. Пять точек, не лежащих в одном и том же 3-пространстве, полностью определяют гиперсферу, подобно тому как четыре точки, не лежащие в одной и той же плоскости, полностью определяют сферу, а три точки, не лежащие на одной и той же прямой, определяют окружность. Все плоские сечения гиперсферы имеют форму окружностей, а все ее сечения 3-пространствами — форму сфер. Гиперсфера радиуса R, проходящая через наше пространство, казалась бы нам сферой, радиус которой постепенно увеличивается от 0 до R, а затем убывает от R до 0.

Рис. 1.

В то время как в нашем трехмерном пространстве существует лишь пять правильных многогранников (тел, ограниченных равными правильными многоугольниками), а именно: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр, в гиперпространстве существует шесть правильных гипертел, ограниченных равными правильными многогранниками. Перечислим их: C>5 (гипертело, ограниченное 5 тетраэдрами), C>8 (гипертело, ограниченное 8 кубами), C>16 (гипертело, ограниченное 16 тетраэдрами), C>24 (гипертело, ограниченное 24 октаэдрами),


Еще от автора Эдвин Эбботт
Флатландия

Этот научно‐фантастический роман считается полезным для людей, изучающих такие темы, как, например, понятия о других пространственных измерениях или гиперпространства. Как литературное произведение роман ценится из‐за сатиры на социальную иерархию Викторианского общества.Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали Флатландию необычайно популярной. Ее (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.«это лучшее введение в способ восприятия измерений, которое может быть найдено»Айзек Азимов.


Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.


Рекомендуем почитать
Подпространство. Битва за цивилизацию!

Всем нам известно, что озоновый слой Земли разрушается. Но, как оказалось, разрушается не только он! И спасти нашу планету от разрушения межпространственного слоя предстоит группе смельчаков под руководством великого учёного! Им придётся столкнуться со множеством трудностей. Хорошо хоть помогать им будут ожившая древняя программа, инопланетянка со множеством сущностей и охранная система Земли! Может, вместе они смогут дать всем нам второй шанс!


Интернет вещей

Интернет вещей может показаться настоящим кошмаром… Ведь умный дом может стать ангелом-хранителем!


Свобода идеалов

Будьте терпеливы к своей жизни. Ищите смысл в ежедневной рутине. Не пытайтесь перечить своему предпочтению стабильности. И именно тогда вы погрузитесь в этот кратковременный мир. Место, где мертво то будущее, к которому мы стремились, но есть то, что стало закономерным исходом. У всех есть выбор: приблизить необратимый конец или ждать его прихода.


Наша старая добрая фантастика. Цена бессмертия

Третья книга «Нашей доброй старой фантастики» дополняет первые две — «Под одним Солнцем» и «Создан, чтобы летать». К авторам, составившим цвет отечественной фантастики 1960—1980-х, в ней добавились новые имена: Георгий Шах, Олег Корабельников, Геннадий Прашкевич, Феликс Дымов, Владимир Пирожников и др. Сами по себе интересные, эти авторы добавили новых красок в общую палитру литературы. Но третья книга антологии не просто дополнительный том, она подводит некую символическую черту, это как бы водораздел между поколениями — поколением тех, кто начинал еще при Ефремове, и поколением новой волны, молодых на ту пору авторов, вышедших из «шинели» братьев Стругацких.


Переселение Эплтона

В архиве видного советского лисателя-фантаста Ильи Иосифовича Варшавского сохранилось несколько рассказов, неизвестных читателю. Один из них вы только что прочитали. В следующем году журнал опубликует рассказ И. Варшавского «Старший брат».


Машина времени. Человек-невидимка. Война миров. Пища богов

В очередной том «Библиотеки фантастики» вошли романы знаменитого английского писателя-фантаста Герберта Уэллса (1866—1946), созданные им на переломе двух веков: «Машина времени», «Человек-невидимка», «Война миров», «Пища богов».


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.