Флатландия. Сферландия - [110]

Шрифт
Интервал

>120 (гипертело, ограниченное 120 додекаэдрами), и C>600 (гипертело, ограниченное 600 тетраэдрами). Математики подробно изучили все правильные гипертела и построили модели их проекций в наше пространство. Из всех правильных гипертел простейшим является C>8 (или гиперкуб), потому что все его грани взаимно перпендикулярны, хотя их и больше, чем у C>5. Гиперкуб служит стандартной единицей при измерении гиперобъема в 4-пространстве. Для получения гиперкуба достаточно переместить куб в направлении, перпендикулярном нашему пространству, на расстояние, равное длине ребра куба. На рис. 1 пунктиром показаны прямые, лежащие в гиперпространстве. ABCDEFGH означает символически начальное положение куба, а A'B'C'D'E'F'G'H' — его конечное положение. Направление AA' по предположению перпендикулярно нашему пространству. Проектируя ребра гиперкуба на наше пространство (имеется в виду, что мы не опускаем перпендикуляры из вершин гиперкуба на наше пространство, а проводим прямые из некоторой близко лежащей точки, проходящей через вершины гиперкуба), мы получаем проволочную модель, изображенную на рис. 2. Восемь граничных кубов представлены на этой модели в следующих проекциях: (1, 2, 3, 4, 5, 6, 7, 8), (5, 6, 7, 8, 9, 10, 11, 12), (9, 10, 11, 12, 13, 14, 15, 16), (13, 14, 15, 16, 1, 2, 3, 4), (1, 5, 9, 13, 2, 6, 10, 14), (2, 6, 10, 14, 3, 7, 11, 15), (3, 7, 11, 15, 4, 8, 12, 16), (4, 8, 12, 16, 5, 9, 13, 1). Форма гиперкуба обусловлена взаимным расположением восьми перечисленных кубов. Сам же гиперкуб содержит бесконечно много кубов так же, как трехмерный куб содержит бесконечно много квадратов. При движении куба, порождающем гиперкуб, вершины исходного куба порождают ребра, ребра исходного куба — грани (квадраты), а грани исходного куба — кубы, ограничивающие гиперкуб. Это позволяет подсчитать число элементов гиперкуба.

Рис. 2.

Каждая вершина гиперкуба принадлежит одновременно четырем взаимно перпендикулярным ребрам, шести граням и четырем кубам, каждое ребро — трем граням и трем кубам, а каждая грань — двум кубам. Таким образом, каждый куб имеет по одной грани, общей с шестью из семи других кубов. Следовательно, гиперкуб можно рассматривать как тело, состоящее из кубов, которые возникли при движении граней исходного куба, а те из кубов, которые лежат в нашем пространстве, параллельны породившим их граням.

Число вершинЧисло реберЧисло граней (квадратов)Число кубов
В начальном положении куба8816
Возникли при движении1281232
В конечном положении куба612624
В гиперкубе1618

Вращение на плоскости может происходить лишь вокруг точки, в 3-пространстве возможно вращение вокруг прямой, а в гиперпространстве — вокруг осевой плоскости. Две симметричные плоские фигуры, например треугольники A и B (рис. 3), нельзя совместить никаким движением в плоскости, но, повернув один из них на 180° в третьем измерении, мы без труда совместим их.

Рис. 3.

Аналогично два симметричных объемных тела (грани которых равны, но расположены в ином порядке), такие, как полые пирамиды C и D (рис. 4), нельзя совместить никаким движением в нашем пространстве, но, повернув любую из них на 180° в гиперпространстве, мы без труда совместим их. Поворачиваемая пирамида исчезнет из нашего пространства и после поворота на 180° и возвращения в наше пространство ее легко будет «надеть» на другую пирамиду. В нашем пространстве два вращательных движения всегда можно заменить одним результирующим движением, аналогичным исходным, но отличающимся от них лишь положением оси вращения. В гиперпространстве в общем случае построить результирующее вращательное движение для двух вращений не удается. Следовательно, в гиперпространстве существует два различных типа вращательных движений, и тело, совершающее два вращательных движения, находится в совершенно ином состоянии, чем тело, участвующее лишь в одном вращательном движении. Если тело совершает лишь одно вращательное движение, то целая плоскость в нем остается неподвижной. Если тело совершает двойное вращательное движение, то ни одна его часть не остается неподвижной, за исключением точки, принадлежащей двум плоскостям вращения. Если оба поворота одинаковы, то каждая точка в теле, за исключением неподвижной точки, описывает окружность.

Рис. 4.

Движение в гиперпространстве отличается большей свободой, чем в нашем пространстве. В нашем пространстве твердое тело обладает шестью степенями свободы, а именно тремя сдвигами вдоль оси и тремя поворотами вокруг оси. Закрепив неподвижно три точки твердого тела, мы лишим его способности двигаться вообще. В гиперпространстве твердое тело с тремя неподвижно закрепленными точками по-прежнему сохраняет способность вращаться вокруг плоскости, проходящей через эти точки. Твердое тело в гиперпространстве обладает десятью степенями свободы, а именно четырьмя сдвигами вдоль четырех осей и шестью поворотами вокруг шести плоскостей. Чтобы лишить твердое тело способности двигаться в гиперпространстве, необходимо закрепить четыре его точки.

Рис. 5.

В гиперпространстве гибкую сферу можно, не растягивая и не разрывая, вывернуть наизнанку. Два звена цепи в четырехмерном пространстве можно разъять, не распиливая ни одно из них. Все наши узлы в четырехмерном пространстве были бы совершенно бесполезны. Например, узел, изображенный на рис. 5, в четырехмерном пространстве можно было бы развязать, оставляя при этом концы веревки по-прежнему прикрепленными к стенке. В нашем пространстве точка может войти внутрь окружности и выйти из нее, не пересекая при этом саму окружность. В гиперпространстве тело могло бы войти внутрь сферы (или любой другой замкнутой поверхности) и выйти из нее, не пересекая при этом поверхности сферы. Короче говоря, все наше пространство, в том числе и внутренность самых плотных тел, открыто наблюдению и более грубому вмешательству со стороны четвертого измерения, незримо простирающегося в невидимом направлении из каждой точки пространства.


Еще от автора Эдвин Эбботт
Флатландия

Этот научно‐фантастический роман считается полезным для людей, изучающих такие темы, как, например, понятия о других пространственных измерениях или гиперпространства. Как литературное произведение роман ценится из‐за сатиры на социальную иерархию Викторианского общества.Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали Флатландию необычайно популярной. Ее (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.«это лучшее введение в способ восприятия измерений, которое может быть найдено»Айзек Азимов.


Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.


Рекомендуем почитать
Подпространство. Битва за цивилизацию!

Всем нам известно, что озоновый слой Земли разрушается. Но, как оказалось, разрушается не только он! И спасти нашу планету от разрушения межпространственного слоя предстоит группе смельчаков под руководством великого учёного! Им придётся столкнуться со множеством трудностей. Хорошо хоть помогать им будут ожившая древняя программа, инопланетянка со множеством сущностей и охранная система Земли! Может, вместе они смогут дать всем нам второй шанс!


Интернет вещей

Интернет вещей может показаться настоящим кошмаром… Ведь умный дом может стать ангелом-хранителем!


Свобода идеалов

Будьте терпеливы к своей жизни. Ищите смысл в ежедневной рутине. Не пытайтесь перечить своему предпочтению стабильности. И именно тогда вы погрузитесь в этот кратковременный мир. Место, где мертво то будущее, к которому мы стремились, но есть то, что стало закономерным исходом. У всех есть выбор: приблизить необратимый конец или ждать его прихода.


Наша старая добрая фантастика. Цена бессмертия

Третья книга «Нашей доброй старой фантастики» дополняет первые две — «Под одним Солнцем» и «Создан, чтобы летать». К авторам, составившим цвет отечественной фантастики 1960—1980-х, в ней добавились новые имена: Георгий Шах, Олег Корабельников, Геннадий Прашкевич, Феликс Дымов, Владимир Пирожников и др. Сами по себе интересные, эти авторы добавили новых красок в общую палитру литературы. Но третья книга антологии не просто дополнительный том, она подводит некую символическую черту, это как бы водораздел между поколениями — поколением тех, кто начинал еще при Ефремове, и поколением новой волны, молодых на ту пору авторов, вышедших из «шинели» братьев Стругацких.


Переселение Эплтона

В архиве видного советского лисателя-фантаста Ильи Иосифовича Варшавского сохранилось несколько рассказов, неизвестных читателю. Один из них вы только что прочитали. В следующем году журнал опубликует рассказ И. Варшавского «Старший брат».


Машина времени. Человек-невидимка. Война миров. Пища богов

В очередной том «Библиотеки фантастики» вошли романы знаменитого английского писателя-фантаста Герберта Уэллса (1866—1946), созданные им на переломе двух веков: «Машина времени», «Человек-невидимка», «Война миров», «Пища богов».


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.