Флатландия. Сферландия - [106]
Для устойчивости экипаж должен был бы обладать по крайней мере четырьмя колесами, а последние должны были бы иметь по крайней мере две оси. Даже если экипаж имел бы плоские колеса и осевые пластины, нам понадобились бы по крайней мере две такие пластины. Для того чтобы находиться в равновесии, необходимо иметь четыре точки опоры, причем все они не должны быть расположены в одной плоскости.
Трудно представить себе, каким образом границы гипертел, то есть конечных частей четырехмерного пространства, могут быть трехмерными. Ясно, что этого требует аналогия, но понять, каким образом каждая точка, лежащая внутри трехмерного тела, может разделять две части, на которые рассекает четырехмерное пространство это трехмерное тело, довольно трудно. Находясь в любой точке внутри трехмерной границы гипертела, мы можем выйти из нее по трем взаимно перпендикулярным направлениям, оставаясь при этом внутри границы. Столько же взаимно перпендикулярных направлений мы насчитываем в нашем трехмерном пространстве. Нам придется идти по кривой траектории, если граница гипертела искривлена, но в начале пути мы можем выйти из точки по трем взаимно перпендикулярным направлениям точно так же, как в нашем трехмерном пространстве.
Гипертело, ограниченное многогранниками, можно вскрыть и разложить многогранники в одном 3-пространстве. Обращая этот процесс, мы можем образовать границу гипертела, составляя ее из надлежащим образом подобранных трехмерных тел в 3-пространстве и поворачивая их затем вокруг общих граней так, чтобы в конце концов они образовали границу гипертела. Трехмерные тела при этом не деформируются и не распадаются. Так, если мы возьмем куб, разместим на его гранях шесть других равных ему кубов и поместим еще один куб поверх одного из шести кубов, то такую конструкцию можно повернуть так, чтобы она образовала гиперкуб, или тессеракт, который упоминается в некоторых из приводимых ниже очерков. Такое построение гипертел аналогично построению многогранников из плоских разверток. Аналогия очень ясная, настолько, что мы можем не сомневаться в итоге нашего построения, хотя оно и приводит к удивительным результатам.
Упомянем здесь некоторые из наиболее простых фигур четырехмерной геометрии, аналогичные фигурам, изучаемым нашей стереометрией.
Первые фигуры, о которых следовало бы упомянуть, — это гиперпризма и гиперцилиндр с параллельными линейными элементами, а также гиперпирамида и гиперконус с линейными элементами, пересекающимися в вершине. Основаниями всех этих гипертел служат многогранники или некие другие трехмерные тела, а их линейные элементы исходят из трехмерного пространства, в котором лежит основание. Гиперкуб является частным случаем гиперпризмы.
Простейший случай гиперпирамиды — фигура, называемая пентагедроидом. В основании ее лежит тетраэдр, или треугольная пирамида. Таким образом, пентагедроид имеет всего пять вершин. Любые пять точек, не лежащие в одном 3-пространстве, можно считать вершинами некоторого пентагедроида. Если из этих пяти точек мы будем всеми возможными способами выбирать но четыре, то получим пять тетраэдров. Следовательно, пентагедроид можно получить как гиперпирамиду пятью различными способами. Тетраэдры расположены так, что имеют попарно общие грани, каждый тетраэдр имеет одну общую грань с каждым из остальных. Эти тетраэдры можно разрезать так, чтобы они образовали трехмерную развертку пентагедроида, то есть чтобы их можно было развернуть в одном 3-пространстве. Трехмерная развертка пентагедроида имеет вид тетраэдра, на каждой из граней которого построено еще по одному тетраэдру. Пентагедроид образуется, когда эти тетраэдры Определенным образом поворачиваются. При таком повороте ни один из тетраэдров не искажается и не отделяется от другого. Сложенные вместе, пять тетраэдров образуют одну замкнутую фигуру, заключающую внутри себя конечную часть гиперпространства. Процесс получения гипертела из его трехмерной развертки аналогичен процессу получения трехмерного тетраэдра из его плоской развертки.
В общем случае граница гиперпирамиды состоит из многогранника, лежащего в основании, и боковых пирамид, покоящихся на гранях основания. Боковые пирамиды примыкают друг к другу общими гранями так же, как грани многогранника, лежащего в основании, примыкают друг к другу общими ребрами.
Гиперпирамиду, в основании которой лежит пирамида, можно рассматривать как гиперпирамиду двумя способами. В каждом из двух случаев вершиной гиперпирамиды служит одна из вершин трехмерной пирамиды, лежащей в основании гиперпирамиды при ином способе рассмотрения. Трехмерные пирамиды, служащие основаниями, имеют общее основание — многоугольник. Таким образом, гиперпирамида определяется многоугольником и двумя точками, не лежащими в одном 3-пространстве с этим многоугольником. Прямую, проходящую через две указанные точки, можно было бы назвать вершинной прямой. Граница гиперсферы состоит из двух пирамид и части, порождаемой треугольником, размеры и форма которого могут изменяться, но одна сторона остается неизменной, а противоположная ей вершина пробегает все точки некоторого многоугольника, не лежащего в одном 3-пространстве с фиксированной стороной. Производящий треугольник иногда называют треугольным элементом.
Этот научно‐фантастический роман считается полезным для людей, изучающих такие темы, как, например, понятия о других пространственных измерениях или гиперпространства. Как литературное произведение роман ценится из‐за сатиры на социальную иерархию Викторианского общества.Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали Флатландию необычайно популярной. Ее (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.«это лучшее введение в способ восприятия измерений, которое может быть найдено»Айзек Азимов.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Ботанический эксперимент профессора Иванова перевернул всю экологию. Рассказ опубликован под рубрикой «Фантасты от 12 до 15».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Зачастую «сейчас» и «тогда», «там» и «здесь» так тесно переплетены, что их границы трудно различимы. В книге «Ахматова в моем зеркале» эти границы стираются окончательно. Великая и загадочная муза русской поэзии Анна Ахматова появляется в зеркале рассказчицы как ее собственное отражение. В действительности образ поэтессы в зеркале героини – не что иное, как декорация, необходимая ей для того, чтобы выговориться. В то же время зеркало – случайная трибуна для русской поэтессы. Две женщины сближаются. Беседуют.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.