Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [92]

Шрифт
Интервал

вместо В, чтобы избежать путаницы — ведь есть другая постоянная
, которую мы использовали при записи закона Кулона, определяющего силу, действующую между зарядами. Используя «закон катапульты», нужно помнить, что 10>-7 — не просто число вроде 2π, а имеет размерность:

B = 10>-7 ньютон∙м>2>2∙м>2 = 10>-7 ньютон/а>2


Поразительное предсказание Максвелла

(Рассуждения, приведенные ниже, слишком трудны для элементарного объяснения; скорее всего этот параграф останется загадкой. Можете его пропустить, если хотите, а можете и прочитать, чтобы познакомиться с рядом удивительных выводов.)

Для катапультирующих сил, т. е. для действия магнитного поля на ток, справедливо выражение

F = B∙[(I>1L>1)∙(I>2L>2)/d>2], где B = 10>-7 ньютон/а>2

Здесь В относится к магнитному полю.

По закону Кулона сила, действующая между двумя электрическими зарядами, равна

F = [Q>1Q>2/d>2], где  = 9,0∙10>9 ньютон∙м>2/кулон>2.

Здесь  относится к электрическим полям. Величины В и  совершенно разные. Мы не ожидаем наличия между ними какой-либо связи, пока не обнаружим, что изменение магнитного поля порождает поле электрическое. (Опыты с магнитами и катушками в гл. 41 продемонстрируют это; в них будет показано, что движущийся магнит создает электрическое поле и возбуждает ток в замкнутом проводнике.) Сто лет назад Максвелл высказал блестящую догадку, предположив, что наблюдается и обратный эффект: изменение электрического поля порождает магнитное поле. Постоянный ток, например поток электронов, движущихся с постоянной скоростью, сопровождается движущимся электрическим полем и стационарным магнитным полем. Но при изменении тока, например при ускоренном движении электронов вверх и вниз в радиоантенне, происходят изменения в движущемся электрическом поле и в сопутствующем магнитном поле. Эти изменения электрического и магнитного полей должны распространяться вместе в виде электромагнитной волны, причем изменения одного поля будут непрерывно порождать другое поле. Так Максвелл открыл радиоволны чисто теоретическим путем. Тогда две постоянные В и , одна для магнитного поля, а другая для электрического, должны быть связаны. Рассмотрим дробь

 >для сил, действующих между электрическими зарядами / B>для катапультирующих сил

Эта дробь имеет размерность (ньютонм>2/кулон>2)/(ньютон/а>2) или (м>2а>2)/кулон>2 или м>2/сек>2, или (м/сек)>2. Это размерность квадрата СКОРОСТИ. Возьмите в качестве величины дроби 9,00∙10>9/10>-7, или 9,00∙10>16, и извлеките квадратный корень, тогда получится значение скорости: 3,0∙ 10>9 м/сек. Это хорошо известная величина — скорость света. Максвелл в своей подробно разработанной теории показал, что дробь √(/В) не просто имеет размерность скорости, но должна представлять собой скорость распространения волны, образованной переменными электрическим и магнитным полями. С такой точки зрения свет оказывается электромагнитными волнами, а результаты измерения его скорости согласуются со значением этой скорости, рассчитанным на основании чисто теоретических соображений по двум постоянным измеренным в электрической лаборатории. Свет, радиоволны, рентгеновские лучи… все электромагнитные волны распространяются в пространстве с этой скоростью.

Если вы видели, как измеряются обе постоянные В и

, одна путем определения силы, действующей между двумя заряженными шариками, с помощью весов, а другая при оценке силы взаимодействия двух токов, то сами сможете рассчитать скорость света из этих измерений.


Катапультирующая сила, действующая на движущийся электрон или ион

Теперь нам нужно произвести еще одно изменение в нашем законе: заменить отрезок проводника L>1 по которому течет ток I>1 отдельным движущимся зарядом, таким, например, как летящий электрон. Катапультирующие силы, вне всякого сомнения, действуют на движущиеся заряды; вы сами можете посмотреть на отклонение пучка электронов в электроннолучевой трубке. И можно представить себе, что ток I>1 создается потоком электронов, текущим внутри проводника.

Предположим, что ток I>1 создается за счет дрейфа n частиц, каждая из которых несет заряд Q и перемещается со скоростью и вдоль проводника L>1. Поставим на выходном конце L>1 наблюдателя, чтобы он считал заряженные частицы, замечал время и вычислял ток I>1. Он пускает свой секундомер в тот момент, когда выходит первая частица А. Он останавливает его, когда некоторое время спустя показывается последняя частица, поскольку ей необходимо было пройти расстояние L>1 со скоростью v. На это уходит время, равное L>1/v сек. За этот промежуток наблюдатель видит появление n частиц, каждая из которых несет Q кулон. Он оценивает ток как ЗАРЯД/ВРЕМЯ, равный nQ/(L>1/v) кулон/сек или nQv/L>1 а. Так что вместо I>1 а мы получили nQv/L>1 а. И вместо I>1L>1 в «законе катапульты» мы должны записать (nQv/L>1)∙L>1, или nQv. Тогда катапультирующая сила, действующая на порцию из n заряженных частиц, дается выражением


Сила, действующая на отдельную частицу с зарядом Q и скоростью v, определяется как


(мы заменили I>1L>1 на Qv), или

F = 10>-7∙(Qv)∙(H), где Н называется магнитным полем, и в центре кольцевого витка Н имеет величину I>2∙2πRN/R>2.

Это та сила, которая искривляет путь потока электронов или любых других заряженных частиц. Она всегда направлена перпендикулярно направлению движения, так что не может изменить величины скорости частиц. Их скорость меняется только по направлению. Эта сила, равная 10


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.