Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [90]

Шрифт
Интервал

. Виток больше не удерживается пружинками, а может свободно вращаться на оси, на которую насажен. Он окружен мягким железом для увеличения массы и усиления намагничивания. Постоянный магнит, создающий поле, заменяется электромагнитом, способным давать более сильное поле. Катапультирующие силы вращают виток, как и в амперметре. Когда ротор (виток + железный сердечник), поворачиваясь, пройдет по инерции через мертвую точку, он должен бы начать вращение в обратную сторону, если бы не остроумный прием: меняется направление тока в витке. Это происходит каждые пол-оборота, так что виток проворачивается еще на пол-оборота… и еще на пол-оборота… и т. д. Изменение направления тока производится автоматически переключателем, который сам вращается с ротором. Этот переключатель, называемый «коллектором», состоит из половинок разрезанного надвое медного цилиндра, укрепленного с помощью изолятора на оси витка. Ток приходит и уходит от источника через «щетки», трущиеся о медь.

В один момент «щетка+» подает ток на полуцилиндр А, а с него через виток на полуцилиндр В и через «щетку—» на выход. Спустя пол-оборота «щетка+» подает ток на полуцилиндр В вокруг витка в обратно направлении, но виток при этом находится уже в новом положении, так что для поддержания непрерывного движения ток должен течь именно в этом направлении. Настоящие электродвигатели содержат множество витков, ориентированных по-разному, чтобы движение было более плавным, а соответствующий коллектор изменяет направление течения тока в каждом витке в нужный момент. Если интересуетесь деталями, посмотрите на настоящий электромотор.



Фиг. 17.Простейший электромотор с коллектором.


Закон катапультирующих сил

Для описания и объяснения опытов, демонстрирующих «атомные» применения катапультирующих сил, нам нужно четкое правило, выражающее силу через ток, длину проволоки и т. д. Мы получим такое правило, но вывод его может показаться сложным — это будет самая сложная «формула» в нашем курсе. Однако это правило существенно для понимания атомной физики — без него нам пришлось бы давать вам детские описания аппаратуры без настоящего объяснения. Так что вам следует изучить приводимый ниже вывод правила и научиться пользоваться этим правилом[113].

В нашем курсе мы выбираем в качестве способа измерения тока определение скорости осаждения меди на электроде[114], так что магнитные эффекты, вызываемые током, являются предметом экспериментального исследования. Опыт показывает, что сила, действующая на проволоку с током, пересекающую магнитное поле, меняется прямо пропорционально изменению этого тока.


ДЕМОНСТРАЦИОННЫЙ ОПЫТ

Как сила зависит от тока? Подвесим проволоку или виток к коромыслу весов. Пропустим через вес ток, величина которого измерена. Приложим сильное магнитное поле в направлении, перпендикулярном проволоке, и путем взвешивания определим катапультирующую силу. На фиг. 18 показана установка, позволяющая продемонстрировать, что

СИЛА ~ ТОКУ.

Чтобы выяснить, какие другие факторы определяют величину катапультирующей силы, мы сначала получим некоторые общие сведения, потом попробуем угадать простой закон, а затем проверим его.



Фиг.18.


Катушки, по которым проходит ток, ведут себя подобно магнитным стержням той же формы и размеров. Замкнутые витки с током подобны очень коротким толстым полосовым магнитам. Два витка притягивают, отталкивают или поворачивают друг друга в точности так же, как эквивалентные им полосовые магниты. Однако в отличие от полосовых магнитов такие витки обладают магнитными полями, которые проходят через них насквозь, причем силовые линии образуют замкнутые кольца (см. фигуры гл. 34). Магнитное поле, проходящее через центр кругового витка, почти однородно в области значительных размеров, и это обстоятельство мы будем использовать при измерениях.

Если токи текут по двум длинным параллельным проводникам А и Б, то каждый из них находится в круговом магнитном поле, создаваемом током другого проводника. Кольцевые силовые линии поля, создаваемого током А, пересекают проводник с током Б под прямыми углами. Катапультирующая сила, действующая на Б, перпендикулярна этим кольцевым линиям и направлению проводника Б. Следовательно, она должна быть направлена прямо в сторону проводника А. Если вы начертите силовые линии суммарного магнитного поля, то обнаружите, что проводники притягиваются, если токи в них текут в одном направлении, и отталкиваются, если направления токов противоположны.



Фиг. 19.Катапультирующие силы между параллельными проводниками.

>Ток одного из проводников создает поле, пересекающее другой проводник под прямым углом. Если этот второй проводник также несет ток, он подвергается действию катапультирующей силы. И тогда на первый проводник будет действовать сила, равная по величине и обратная по направлению.


Для получения простого закона катапультирующих сил нам не нужны длинные проводники или витки целиком. Вместо этого попытаемся упростить задачу, выбрав для рассмотрения короткий отрезок проволоки, по которой идет ток. После этого мы сможем рассматривать длинные проводники, витки и целые электрические цепи как состоящие из коротких отрезков и находить силу, действующую на проводник в целом, складывая силы, действующие на отдельные отрезки. Этот прием полезен при расчете сил, действующих на катушки в электродвигателях, амперметрах и т. д. Если заменить короткий отрезок проводника с током на отдельный движущийся электрон, то наше и без того упрощенное рассмотрение упрощается до предела. Ампер и другие физики высказали много остроумных догадок о форме закона, который мы ищем, сто лет тому назад, но у них не было способа детально проверить свои догадки, поскольку в их распоряжении имелись только замкнутые цепи целиком. Однако они с успехом проверяли свои предсказания на электрических цепях разнообразных форм


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.