Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [91]

Шрифт
Интервал

.



Фиг. 20.Суммарное магнитное поле параллельных токов.

>Притяжение между токами, текущими в одном направлении, и отталкивание в случае токов, текущих в противоположных направлениях.


Чтобы вывести нужный закон, начнем с рассмотрения двух длинных параллельных проводников, по которым текут токи I>1 a и I>2 a и которые находятся друг от друга на расстоянии d м. Они будут вызывать катапультирующие силы, действующие в поперечном направлении, как показано на фиг. 22. После этого выберем два очень коротких отрезка проводников, находящихся друг против друга, L>1 и L>2, и не будем обращать внимания на остальные части проводов. Рассматривая их как части длинных параллельных проводников, можно ожидать, что каждый из отрезков будет окружен круговым магнитным полем. Если токи текут в одном направлении, то катапультирующие силы будут притягивать эти два «элемента тока» друг к другу. (Отрезок L>1 , например, по которому течет ток I>1, пересекается магнитными силовыми линиями тока I>2 в проводнике под прямым углом; поэтому на него действует сила — F, направленная слева направо.)

Из опыта, описанного выше, мы знаем, что эта сила изменяется прямо пропорционально току в проводнике:

FI>1 (из опыта).

Если бы мы увеличили длину отрезка проводника вдвое, соединив последовательно два проводника L>1, то, очевидно, сила, действующая на них, была бы равна двум F, т. е. на удвоенную длину пришлась бы удвоенная сила, т. е. сила, действующая на исследуемый проводник, пропорциональна его ДЛИНЕ.



Фиг. 21. «Элементы токов».

>На двух длинных проводниках выбраны короткие участки L1 и L2, один напротив другого.



Фиг. 22.Силы, действующие между элементами токов.

>Их направление подсказывается видом силовых линий суммарного магнитного поля.


F ~ L>1 (предположение, оправдываемое мысленным экспериментом или здравым смыслом),

~ I>1 и F ~ L>1 или F ~ I>1L>1

Но схема симметрична — кто может сказать, какой из проводников «действует» на другой, создавая магнитное поле, а какой «подвергается действию»?

F ~ I>2L>2 так же, как F ~ I>1L>1

или

F ~ (I>1L>1)∙(I>2L>2)

Полный закон взаимодействия должен содержать расстояние между отрезками проводника. Простые опыты показывают, что F уменьшается с увеличением d. Зная это, что вы можете предположить? Наиболее правдоподобное предположение об обратной квадратичной зависимости, будучи подвергнутым опытной проверке, подтверждается. Тогда

F ~ (I>1L>1)∙(I>2L>2)/d>2

или

F = B∙[(I>1L>1)∙(I>2L>2)/d>2]

где В — общий постоянный множитель.

Однако от закона в такой форме пользы мало. Необходим множитель, который бы учитывал отклонения направлений от параллельных и перпендикулярных — этих отклонений мы будем стараться избегать, выбирая простейшие геометрические условия. В опытах мы пользуемся замкнутыми цепями, так что будем считать L>1, короткой стороной длинного прямоугольного витка (а впоследствии участком траектории электрона). Для удобства мы возьмем не один короткий отрезок L>2, а много таких отрезков, соединенных последовательно, и образуем из них кольцевой виток, в центре которого будет располагаться L>1 (фиг. 23, 24). Тогда вокруг каждого из отрезков, образующих виток и несущих ток I>2 а, возникнет кольцевое магнитное поле, пересекающее отрезок L>1, расположенный в центре, и каждый из кусочков кольца будет расположен на расстоянии R, равном радиусу кольца, от L>1. Тогда сила, действующая на L>1, дается выражением

F = B∙[(I>1L>1)∙(I>2∙первый отрезок L>2)/R>2] + B∙[(I>1L>1)∙(I>2∙второй отрезок L>2)/R>2] + и т. д. (по всем отрезкам L>2, образующим кольцо) =

F = B∙[(I>1L>1)∙(I>2)/R>2] (первый отрезок L>2 + второй отрезок L>2 + по всему кольцу) =

F = B∙[(I>1L>1)∙(I>2∙2πR)/R>2]

Если кольцо содержит N витков, то

F = B∙[(I>1L>1)∙(I>2∙2πR∙N)/R>2]

Сформулировав предполагаемый закон, мы проверяем его, измеряя силу, действующую на короткую сторону прямоугольной рамки с током, помещенной в центр кольцевого витка, по которому также течет ток. Пример такого рода изображен на фиг. 23, 24. Без экспериментальной проверки придется поверить этому закону на слово.



Фиг. 23.Проверка закона катапультирующих сил с помощью элементов токов.

>Измеряется сила, действующая на короткую сторону L1. Кольцевой виток, несущий ток I2, рассматриваем как последовательность коротких отрезков, отстоящих от центра на расстояние R.



Фиг. 24.Определение катапультирующей силы для частичной проверки закона.

>а — длинный виток подвешен на коромысле весов, и ток на него подается через чашечки со ртутью; б — длинный виток кладется на рычажные весы, и ток также подводится через чашечки со ртутью.


Определение постоянной В

Если в демонстрационном опыте, подобном тому, который изображен на фиг. 24, мы выполним все необходимые измерения (т. е. определим все линейные размеры, измерим оба тока и силу), то после этого сможем оценить постоянную В. Точные измерения дают значение В = 0,000000100,т. е. 10>-7. Это и в самом деле круглое число 1/10 000 000, поскольку величина ампера выбрана так, чтобы сделать его круглым. Следовательно, в нашем определении ампера через скорость осаждения меди мы вынуждены использовать некруглое число 0,000 000 329 кг меди в 1 сек. Отныне мы будем писать 10


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.