Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [15]
Фиг. 37.
Опыт 13. Б) Радиолампа (нить накала холодная). После того как вы исследовали радиорезистор и набросали для него график, замените резистор радиолампой — диодом. Присоедините вашу цепь к аноду радиолампы и одному концу ее нити накала[29]. Опять-таки проделайте опыт во всем диапазоне напряжений от 0 до +100 в или больше и от 0 до —100 в. Постройте график по полученным результатам, какими бы они ни оказались.
Опыт 13. В) Радиолампа (нить накала нагрета). Теперь снова проделайте опыт с радиолампой, но у которой нить накала (катод) нагрета. Нагрев нити накала производится током вспомогательной цепи, подключенной к батарее. Перечертите свою цепь, добавив к ней цепь накала, содержащую батарею, реостат, амперметр и выключатель. Замкните цепь накала, установив значение тока, рекомендуемое для выбранной лампы, и повторите предыдущие измерения. Снова постройте график, откладывая положительные и отрицательные значения.
Опыт 13. Г) Знак зарядов. Есть основания полагать, что нагретая нить накала испускает какие-то электрически заряженные частицы, способные переносить ток от нити накала к аноду. Какой знак заряда должен быть у таких носителей тока, плюс или минус? Исследуйте внимательно аппаратуру, и с помощью необходимых рассуждений придите к ответу на этот важный вопрос, исходя из ваших опытов. Подобная радиолампа пригодится вам в дальнейших опытах.
Сопротивление и единицы его измерения
Опыты показывают, что простое соотношение, установленное для «проволоки, обладающей сопротивлением», является универсальным. Для большинства твердых проводников (и некоторых видов электролитических ванн, а иногда даже для проводящих газов) отношение
НАПРЯЖЕНИЕ МЕЖДУ КОНЦАМИ ПРОВОДНИКА / СИЛА ТОКА, ТЕКУЩЕГО ЧЕРЕЗ ПРОВОДНИК
при постоянной температуре представляет собой постоянную величину. Мы называем эту постоянную «сопротивлением» проводника.
Следовательно,
СОПРОТИВЛЕНИЕ = НАПРЯЖЕНИЕ МЕЖДУ КОНЦАМИ ПРОВОДНИКА / ТОКА, ТЕКУЩЕГО ЧЕРЕЗ ПРОВОДНИК
и при употреблении обычных единиц равно отношению
НАПРЯЖЕНИЕ в вольтах / СИЛА ТОКА в амперах
Таким образом, сопротивление должно измеряться отношением вольты/амперы, т. е. числом вольт на ампер. Поскольку сопротивление часто встречается в электротехнических расчетах, единице сопротивления присвоено более короткое наименование: один вольт на ампер называют одним омом. Иначе говоря, «омы» — это сокращение для «вольт/ампер». Часто для максимальной краткости единицу «ом» записывают греческой буквой ω или Ω (малая и большая омега, последняя буква греческого алфавита).
Когда мы говорим, что сопротивление провода 5 ом (или 5 й), мы имеем
В ВИДУ, ЧТО НА КАЖДЫЙ АМПЕР СИЛЫ ТОКА, ТЕКУЩЕГО ПО ПРОВОДУ, МЕЖДУ КОНЦАМИ ПРОВОДА ДОЛЖНО БЫТЬ ПРИЛОЖЕНО НАПРЯЖЕНИЕ 5 в.
Километр медного телефонного провода обладает сопротивлением несколько десятков ом. Километр силового кабеля обладает сопротивлением, составляющим доли ома или самое большее несколько ом. Сопротивление электрической лампочки составляет сотню ом или около того.
Измерение сопротивлений
Чтобы измерить сопротивление, которое, как мы предполагаем, «подчиняется» закону Ома, возьмите пару значений напряжения и силы тока, отсчитанных по измерительным приборам. Если сопротивление очень велико, то вместо амперметра нужно взять миллиамперметр. Если сопротивление очень мало, то вместо вольтметра следует взять милливольтметр.
Если построена вольтамперная характеристика проводника в виде графика, то сопротивление равно отношению напряжение/сила тока или наклону графика.
Инженерам-электрикам часто требуется знать сопротивление линий электропередачи, телефонных проводов, обмоток электромоторов. Вы тоже встретитесь с задачами по электротехнике, в исходные данные которых входят сопротивления. Существуют остроумно устроенные приборы, позволяющие измерять сопротивление, не подвергая испытуемый элемент нагреву большими токами, но часто вполне можно обойтись простым способом, который вы применяли в ваших опытах. В измерениях, проводимых в опытах 14–19 (см. ниже), пользуйтесь именно этим способом.
Фиг. 38.Измерение сопротивления.
Опыт 14. Измерение сопротивления отрезка провода или катушки.
Если вы приняли, что проволока «подчиняется закону Ома», т. е. что для нее характерно некоторое постоянное значение отношения напряжения к силе тока, то вам достаточно взять лишь одну пару измеренных значений силы тока и напряжения.
Можно взять другую пару независимых значений для проверки, но если вы не собираетесь начать сызнова общее исследование нового элемента электрической цепи, то нет никакого смысла производить всю серию измерений. Снимите пару достаточно точных показаний приборов и вычислите сопротивление. (Помните, что измерения, при которых отсчет берется в самом начале шкалы измерительного прибора, вблизи нуля дают бóльшую
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.