Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [13]

Шрифт
Интервал

Учение об электрических цепях было еще молодо. После того как примерно в 1800 г. изобрели батареи, оно стало развиваться с быстротой растения в тропиках. Проектировались и изготовлялись, часто вручную, различные приборы, открывались законы, формировались понятия и терминология, развивались общие принципы — все это вело к более глубокому пониманию явлений. Углубление знаний об «электричестве», с одной стороны, носило характер становления новой области физики, а с другой — создавало базу для бурного развития электротехники: батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, моторы… словом, все, из чего складывается наша электрическая цивилизация. Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства цепей сперва для установившегося постоянного тока, а потом (в эквивалентной форме) для переменных токов. Книга Ома, насчитывавшая примерно 250 страниц, которую он опубликовал в 1826 г., изложив свои теоретические выводы и экспериментальные результаты, была встречена насмешками.

Метод грубого экспериментирования по заранее намеченному плану казался мало привлекательным в эпоху увлечения философией; так,

«... министр просвещения высказал мнение, что "физик, проповедующий подобную ересь, недостоин преподавать естественные науки". Ому не оставалось ничего другого, как уйти с занимаемой им должности преподавателя. Не добившись назначения в университет по той причине, что к его трудам не относились как к работе экспериментатора, Ом теперь потерял должность потому, что в других кругах его труды рассматривали как экспериментаторскую работу.

В течение шести лет Ом жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования. Постепенно, однако, его труды получили известность, сначала за пределами Германии. Ома стали чтить за границей, и соотечественники были вынуждены нехотя признать его у себя на родине. Наконец, в 1849 г., 22 года спустя после публикации его книги, Ом получил должность профессора Мюнхенского университета. Энергичная деятельность на этом посту приносила Ому большое удовлетворение, он занимал его в течение пяти лет вплоть до смерти, последовавшей в 1854 г.» [23]

Ом открыл простой Закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, всей цепи). Кроме того, Ом открыл правила, которые позволяют определить, что изменится, если взять проволоку другого знаменитого исследователя.

Попытайтесь сами повторить открытие Ома, проделав описанный ниже лабораторный опыт с помощью современного оборудования.


Опыт 9. Ток и напряжение. Как зависит напряжение между концами отрезка проволоки, обладающей определенным сопротивлением, от СИЛЫ ТОКА, текущего по ней?

Воспользовавшись в качестве испытуемого объекта куском «проволоки, обладающей сопротивлением»[24], установите, как зависит напряжение между концами проволоки от силы тока, текущего по ней. Составьте схему, которая позволила бы пропускать по проволоке измеренный ток; при этом следует предусмотреть возможность изменения тока в широких пределах. Подключите вольтметр так, чтобы измерять напряжение на отрезке проволоки. Проделайте серию измерений в пределах возможно более широкого диапазона изменения тока. Проанализируйте результаты ваших измерений и попытайтесь найти какое-нибудь соотношение. Кроме того, постройте график для наглядного представления результатов измерений и попытайтесь сделать выводы из этого графика.


Опыт 10(необязательный). Повторите опыт 9, используя проволоку из какого-нибудь чистого металла, например железа или вольфрама (в вакууме).


Опыт 11 (необязательный). Повторите опыт 9 с лампой накаливания с угольной нитью.


Опыт 12 (необязательный). Повторите опыт 9, воспользовавшись пластинкой из тирита[25]. (Она служит в качестве предохранительного устройства, не давая току возрасти сверх определенной величины.)


Опыт 13. Радиолампа.Повторите опыт 9 с простейшей радиолампой (диодом). Эта лампа состоит из стеклянного баллона, в который впаяны два металлических электрода; внутри баллона создан очень хороший вакуум. Один из электродов — анод, другой — вольфрамовая нить накала, которую можно нагревать, пропуская по ней электрический ток. Исследование вольтамперной характеристики этой лампы не просто познакомит вас с одной деталью радиоприемника. Это начало изучения электронных потоков, электронных пушек, осциллографов, телевизионных трубок и т. д.

Если вы располагаете обычным источником питания, будь то, скажем, 120-вольтовая батарея или генератор, то для изменения напряжения, прикладываемого к нашей двухэлектродной радиолампе, потребуется реостат с огромным сопротивлением, которого может не оказаться. Вместо такого реостата следует воспользоваться остроумной схемой, называемой «делителем напряжения», которая описана ниже.



Фиг. 33. Простейшая радиолампа (диод).


Делитель напряжения

Делитель напряжения предназначен для получения плавно изменяемого напряжения от источника высокого постоянного напряжения. Возьмите реостат (переменное сопротивление), который можно без опасения включить на полное сопротивление в электрическую сеть. Подсоедините крайние точки


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.