Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [17]

Шрифт
Интервал

). Отметьте показание миллиамперметра.

2) Включите вместо RR радиолампу (с любыми вспомогательными приборами, которые вы сочтете необходимыми). Посмотрите, что показывает миллиамперметр.



Фиг. 43. Опыт 21.


Опыт 22. Электроны чертят графики временной зависимости. Пучок электронов может служить для вычерчивания графиков временной зависимости точно так же, как он рисует изображение на экране телевизора. В следующей главе мы рассмотрим устройство трубок, применяемых для этой цели, теперь же мы просто воспользуемся прибором с такой трубкой для вычерчивания графиков напряжения переменного тока. Прибор этот называется электронным или катодно-лучевым осциллографом. Поперек экрана осциллографа непрерывно движется с постоянной скоростью световое пятно, образуя ось времени. Пятно смещается вверх и вниз пропорционально приложенному напряжению и, таким образом, вычерчивает график зависимости этого напряжения от времени. Чтобы увидеть, как действует диод, нужно рассмотреть на экране график зависимости тока, текущего через диод, от времени. Для этого нужно получить небольшое напряжение, изменяющееся прямо пропорционально току. С этой целью включают в цепь сопротивление, подчиняющееся закону Ома (SR), как показано на фиг. 44.



Фиг. 44.Опыт 22.

>Изучение тока, текущего через компонент цепи, с помощью электронного осциллографа. Разность потенциалов на специально включенном сопротивлении SR пропорциональна току, под действием этой разности потенциалов светящееся пятно движется по экрану вверх или вниз.


Составьте предыдущую цепь с радиорезистором RR, на который подается напряжение переменного тока, и включите в цепь сопротивление SR, как показано на фигуре. Подсоедините проводами концы сопротивления SR к осциллографу: кривая на экране представляет собой график зависимости тока в цепи от времени[34]. Теперь вместо резистора RR включите диод и снова посмотрите на экран. (Сперва подумайте над тем, как действует радиолампа, и посмотрите, не удастся ли вам предсказать форму кривой тока до того, как вы станете наблюдать ее на экране осциллографа.)

Такое действие диода, в результате которого получаются полуволны тока одного направления, называется «однополупериодным выпрямлением»[35]. Оно оказывается весьма полезным в тех случаях, когда хотят получить постоянный ток от источника напряжения переменного тока.

Например, аккумуляторы заряжают, пропуская через них ток в «обратном» направлении. Для этого нужно иметь постоянный ток. Переменный ток совершенно не годится для этой цели, он мог бы даже причинить известный вред. Выпрямительные лампы позволяют получить пульсирующий постоянный ток для зарядки аккумулятора от источника переменного тока (фиг. 45).



Фиг. 45. Диод как «однополупериодный» выпрямитель, используемый для зарядки аккумулятора.


Остроумная схема из двух диодов (иногда оба диода размещают в одном и том же стеклянном баллоне) дает «двухполупериодное выпрямление», при котором пульсирующий ток получается более близким к току с постоянной амплитудой. Поток электронов устремляется сначала через один диод, потом через другой, затем снова через первый и т. д. — подобно тому, как если доить корову двумя руками: молоко все время течет в одном направлении — в подойник. Таким образом, в аккумулятор поступают импульсы тока, который течет все время в одном направлении, проходя через диоды в виде потока электронов. Работа двухполупериодного выпрямителя рассмотрена в задаче 34. Советуем вам посмотреть соответствующий демонстрационный опыт.


Опыт 23. Линия электропередачи. Позже мы будем рассматривать линии электропередачи в задачах, а еще позже вернемся к линиям с источниками переменного тока. Но на данном этапе желательно, чтобы вы сами исследовали в лаборатории с помощью измерительных приборов модель системы электроснабжения.

В этом опыте наиболее плодотворным следует считать обсуждение измерений, поэтому мы дадим вам подробные указания к выполнению опыта. Протяните два провода из проволоки с высоким сопротивлением, укрепив их на стойках. Это будет модель линии электропередачи между электростанцией (ЭС) и поселком (П). Для имитации поселка, потребляющего электроэнергию, возьмите лампу накаливания (Л), а моделью электростанции пусть служит аккумуляторная батарея. На настоящих электростанциях щит управления освещается лампочкой, которая подключается в обход тех плавких предохранителей или разъединителей цепи, через которые поступает ток в поселок. Включите тоже такую лампочку (Л). Она будет служить для сравнения с Л (измерять ток через Л не следует). Включите прибор для измерения тока в линии электропередачи от электростанции до поселка и обратно. Возьмите длинные соединительные провода для вольтметра, чтобы проделать необходимые измерения величин, указанных в бланке с таблицей для записи результатов.

Вычислите мощность, отдаваемую на каждом участке цепи. Проделайте арифметическую проверку очевидного ожидаемого результата. Вычислите коэффициент полезного действия, определяемый следующим образом. Коэффициент полезного действия — это отношение

ПОЛЕЗНАЯ МОЩНОСТЬ, потребляемая поселком / ПОЛНАЯ МОЩНОСТЬ, отдаваемая в линию электропередачи (включая потребляемую поселком)


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.