Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [39]

Шрифт
Интервал


Кеплер вновь был счастлив. Ему удалось вырвать у природы ее дивную тайну. Вот что он писал по этому поводу:

«То, что я предсказывал двадцать два года назад, то, во что я твердо верил задолго до того, как увидел «гармонии» Птолемея, то, что обещал моим друзьям в заглавии этой книги, в заглавии, которое я ей дал прежде, чем уверился в моем открытии, то, что я уже пытался искать шестнадцать лет назад и ради чего присоединился к Тихо Браге и переехал в Прагу, то, во имя чего я посвятил лучшие годы моей жизни астрономическим наблюдениям, — мне наконец удалось понять и объяснить, и успех мой превзошел даже самые оптимистические ожидания. Не прошло еще и восемнадцати месяцев с тех пор, как я заметил, наконец, первый проблеск света. Минуло всего три месяца с тех пор, как забрезжил рассвет, и несколько дней, как засверкало ничем не затуманенное восхитительное Солнце. Ничто не удерживает меня… жребий брошен, написана книга, которая будет прочитана либо теперь, либо потомками. Это меня не беспокоит; она может ждать своего читателя хоть целое столетие — ведь бог ждал шесть тысяч лет, чтобы увидели его творение».


Законы Кеплера

Потребовались годы вычислений, измерения, размышления и снова вычисления, — пока Кеплер не обнаружил среди прочих бесценных для него «гармоний» три великих закона:

ПЕРВЫЙ ЗАКОН.Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

ВТОРОЙ ЗАКОН.Радиус-вектор (линия, соединяющая Солнце и планету) описывает за равные промежутки времени равные площади.

ТРЕТИЙ ЗАКОН.Квадраты периодов обращения планет пропорциональны кубам их средних расстояний от Солнца. (Или отношение R>3/T>2 одинаково для всех планет.)

Первые два закона можно было проверить с помощью имеющихся данных. Таким образом, Кеплер был уверен, что его догадка правильна. Для проверки третьего закона нужны были лишь относительные значения радиусов орбит планет.

Значение трудов Кеплера огромно. Он открыл законы, которые затем Ньютон связал с законом всемирного тяготения. Конечно, сам Кеплер не отдавал себе отчета в том, к чему приведут его открытия. «Он не занимался утомительными поисками эмпирических правил, которые в будущем должен был привести к рациональному виду Ньютон. Он искал первопричины, математические гармонии, возникавшие у творца при сотворении мира»[48]. Кеплер не мог объяснить, чем обусловлено существование эллиптических орбит, но восхищался тем, что они существуют.


Вывод третьего закона

Вывод третьего закона сводился к угадыванию числового соотношения, которое было бы справедливо для нескольких пар чисел. Пытаясь удовлетворить определенному количеству данных (в рассматриваемом случае значениям Т и R для шести планет), можно сделать много неудачных попыток, и из подобных попыток, удовлетворяющих Т и R для шести планет, многие оказываются неверными в применении к седьмой планете (Урану, открытому позже). В свою очередь, успешные попытки для семи планет неверны для восьмой планеты (Нептуна). Привлечение все большего числа данных может устранить «неверные» попытки и оставить лишь «правильную». Но в каком смысле эта догадка «правильная»?

Некоторые верят, что в основе вещей, которые мы наблюдаем в природе, лежит некая абсолютная истина. Кеплер и Ньютон, вероятно, думали так же. Другие считают, что верное правило это просто?

а) то, что имеет наиболее общее применение (например, для наибольшего числа планет).

В этом смысле предположение Кеплера о том, что отношение R>3/T>2 постоянно для всех планет, правильно, так как оно справедливо и для других планет, которые были открыты позднее, и для других систем, например для спутников Юпитера. Его правило пяти правильных многогранников было неверно, так как не соответствовало данным для шести известных планет, и оказывалось совершенно несостоятельным для случая более шести планет.

Утверждают также, что верен закон, который

б) наилучшим образом соответствует теории, связывающей воедино огромное многообразие наших знаний о природе.

Если эта теория была создана только для решения какой-либо частной задачи, как рабочая гипотеза, то закон (б) становится бессмыслицей — в этом случае он лишь означает, что данный закон верен только потому, что согласуется с теорией, специально созданной в предположении, что этот закон верен. Мы называем такую теорию теорией «ad hoc». Если же, однако, теория связывает данную проблему с другой областью науки, то закон (б) служит ей убедительной рекомендацией.

Ньютон, строя догадки о существовании всемирного тяготения, создал теорию, связывающую падение тел, движение Луны и движение планет с приливами и отливами и т. д. Он показал, что третий закон Кеплера (как и другие два его закона) с необходимостью следуют из этой теории. Таким образом, закон R>3/T>2  можно считать «верным» согласно обоим определениям: и по общей применимости, и по согласию с теорией. Он мог оказаться «неверной» догадкой, ожидающей, подобно закону «пяти правильных многогранников», большего количества данных, чтобы быть опровергнутым, или теории, которая не могла бы его «предсказать»[49].


Воображаемая «Задача Кеплера»


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.