Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [38]

Шрифт
Интервал

. Первый закон Кеплера, открытый им вскоре после этого, определяет истинную форму орбит планет.


Орбита Марса. Первый закон

Начертив орбиту Марса (по сорока тщательно вычисленным точкам), Кеплер попытался дать математическое выражение для ее овальной формы. Он испытывал бесконечные затруднения, одно время даже говорил, что почти сходит с ума от тех трудностей, которые ему приходится испытывать. Желая получить финансовую поддержку, он писал императору в присущем ему напыщенном стиле: «Торжествуя победу над Марсом и приготовляя для него, как для побежденного, тюремные своды таблиц и оковы эксцентриков, я слышу то там, то тут шепот, что моя победа напрасна и что война бушует снова. Так как враг остался в доме, презренный пленник разорвал все цепи уравнений и вырвался из тюрьмы таблиц».



Фиг 80.Определение орбиты Марса по Кеплеру.

>Орбита Марса представляет собой эллипс, в одном из фокусов которого находится Солнце. Плечо, идущее от Солнца к планете, описывает равные площади за равные промежутки времени. На окружности эллипса отмечены положения планеты через промежутки времени, равные 1/20 времени обращения Марса (марсианского года). Скорость планеты при ее движении по орбите меняется так, что все указанные здесь секторы имеют одинаковые площади



Фиг. 81.Солнечная система с окружающими Солнце эллиптическими орбитами.

>Орбиты планет в нашей Солнечной системе имеют значительно меньшие эксцентриситеты. Кометы движутся по эллиптическим орбитам с бóльшими эксцентриситетами.


Наконец, Кеплер нашел истинную орбиту Марса; она была заключена между эксцентрическим кругом, который был слишком велик по сравнению с ней, и вписанным внутрь круга эллипсом, который был слишком узок. И круг и эллипс расходились с наблюдениями, круг на +8' в некоторых участках орбиты, а внутренний эллипс на —8'. Кеплер внезапно понял, что орбита должна представлять собой эллипс, в одном из фокусов которого находится Солнце.

Убедившись в правильности своего предположения, он был так восхищен, что украсил свой чертеж изображением победоносной Астрономии на триумфальной колеснице, чтобы подчеркнуть значение полученного им доказательства (фиг. 82).

Наконец-то он определил, истинную орбиту Марса[46]. Подобное же правило оказалось справедливым для Земли и других планет. В этом и состоит первый закон Кеплера, т. е. каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.



Фиг. 82.Диаграмма Кеплера из его книги о Марсе.


Третий закон

Таким образом, с помощью таблиц Тихо Браге, благодаря бесстрашию, уму и неустанной работе Кеплер вывел два великих «закона». Он продолжал размышлять над одним из тех вопросов, которые интересовали его и ранее: какова связь между размерами орбит планет и длительностью их периодов обращения? Теперь ему были известны радиусы[47] орбит, а периоды их обращения были известны с давних пор. (Как предполагали древние греки, планеты с большими периодами обращения имеют бóльшие орбиты.) Он был уверен, что между радиусом планеты и ее периодом обращения должно существовать определенное соотношение. Кеплер делал много попыток найти такое соотношение, но большинство попыток было безрезультатно, как и его планетная система из пяти правильных многогранников, другие же носили мистический характер.

К счастью, связь между радиусами и периодами обращения действительно существует, и Кеплеру посчастливилось испытать радость открытия. Он нашел, что отношение R>3/T>2 одинаково для всех планет (здесь R — средний радиус орбиты планеты, а Т — период ее обращения, см таблицу).




Фиг. 84.Орбита Земли (изображена в соответствующем масштабе).

>Эксцентриситет орбит планет нашей системы в действительности очень мал. Орбиты почти круговые, однако на основе наблюдений Тихо Браге, Кеплеру удалось показать, что они представляют собой не круги, а эллипсы. Показана орбита Земли в масштабе. Минимальный радиус орбиты обозначен здесь как 4,0000 см, максимальный — 4,0006 см. Эксцентриситет орбиты Марса превышает эксцентриситет орбиты Земли более чем в тридцать раз, но и в этом случае радиусы относятся как 1,0048 к 1,000. Меркурий — единственная планета со значительно бóльшим эксцентриситетом, ее максимальный радиус относится к минимальному как 1,022 к 1,000. Даже этот эксцентриситет орбиты представляется малым, однако это значение оказывается уже достаточным, чтобы скорость Меркурия при его движении по орбите изменялась согласно предсказаниям релятивистской механики. Действительно, орбита Меркурия должна прецессировать, т. е. должна (очень медленно) вращаться. Прецессия орбиты Меркурия равна всего 1/80° в течение столетия — она была найдена и измерена задолго до того, как появилась теория относительности и было сделано это предсказание!



Фиг. 85.Соотношение между радиусом и «периодом обращениям для орбит различных планет.

>Орбиты даны в грубом соответствии о масштабом



Фиг. 86.Период обращения планеты.

>Это время, за которое планета совершает полный оборот по своей орбите. Определяя истинный период обращения планеты из наблюдений, следует учитывать движение Земли


Кеплер вновь был счастлив. Ему удалось вырвать у природы ее дивную тайну. Вот что он писал по этому поводу:


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.