Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [190]

Шрифт
Интервал

Это иллюстрируется следующим примером.



Фиг. 166.Расстановка «синхронизованных» часов.


Пример

Наблюдатели ε и ε' расположили свои лаборатории в двух прозрачных железнодорожных вагонах на параллельных путях, причем один из них движется со скоростью v относительно другого. Как только вагоны проходят один мимо другого, ε и ε' высовываются в центральные окна и обмениваются рукопожатием. Но оказывается, что сами наблюдатели заряжены зарядами + и —, поэтому при соприкосновений между ними проскакивает искра. Рассмотрим теперь свет от этой искры. Из средней точки, где находились экспериментаторы, часть света проходит в вагоны. Наблюдатель ε видит, что свет достигает передней и задней стен вагона одновременно (фиг. 167, а). Наблюдатель ε' также видит, что свет достигает стен его вагона одновременно (фиг. 167, б). Каждый из них считает, что находится в неподвижном вагоне и свет, по его мнению, распространяется от центра с постоянной скоростью с. Но ε может наблюдать и за распространением света в вагоне, где едет ε'. Он видит те же события, что и ε', но, разумеется, не считает их одновременными, как об этом заявляет ε'. Пока свет успевает пройти полвагона, сам вагон продвигается вперед. Наблюдателю ε кажется, что свету для достижения передней стены приходится идти дольше, а для достижения задней — меньше. Поэтому ε видит, что свет раньте достигнет задней стены, тогда как ε' заявляет, что свет попадает па обе стены одновременно[261]. (В свою очередь ε' видит, что свет достигает концов вагона, в котором едет ε, в разные моменты, тогда как ε заявляет, что одновременно.) В обыденной жизни вы не встретите таких противоречий, ибо подобные споры возникают только в тех случаях, когда события очень близки по времени и очень удалены по расстоянию. Когда события Р и Q разделены по времени интервалом короче, чем время распространения света между соответствующими точками, у наблюдателей с разным характером движения будут разные точки зрения: один будет видеть, что события Р и Q одновременны, другой найдет, что Р происходят раньше, чем Q, а третий — наоборот, что Q происходит раньше, чем Р.

В представлениях теории относительности Эйнштейна время считается тесно переплетенным с пространством в так называемом пространстве-времени, разделение которого на пространство и время зависит от движения наблюдателя. Но если мы принимаем существование пространства-времени, то должны будем переосмыслить и наши представления о причине и следствии.




Фиг. 167.Мысленный эксперимент.


Причина и следствие

В вопросе о причинности в прежней науке было немало путаницы. Греки искали «первопричину». В последующем ученые искали непосредственную причину: «нагревание — причина плавления камня», «давление — причина течения жидкости», «α-частицы — причина образования ионов». Определить, что причина, а что следствие — не просто. Что означает: «Р вызывает Q». Самое лучшее сказать, что причина — это нечто, предшествующее следствию. Мы не придем к противоречию, если представим, что между ними существует некая связь.

Даже в обычных ситуациях (типа напряжение и деформация или разность потенциалов и ток) мы предпочитаем говорить, что события Р и Q происходят одновременно. Мы по-прежнему ищем соотношения, которые бы выражали наши представления, но события Р и Q обычно рассматриваются как братья, а не как родители и дети.

Теория относительности утверждает, что порядок некоторых событий может, по мнению разных наблюдателей, оказаться различным и каждый из них будет в равной степени прав На фиг. 169 показано, как разные наблюдатели, для которых событие Р происходит здесь и сейчас (т. е. в той же точке и в тот же момент), должны будут считать, что некоторые события (например, Q>1) происходят в абсолютном будущем, некоторые (Q>2) — в абсолютном прошедшем, а некоторые (Q>3) — в абсолютном где-то (absolute elsewhere — как назвал их Эддингтон)[262]. Относительно их порядка очередности с событием Р может возникнуть разногласие между наблюдателями, движущимися по-разному.

Таким образом, нужно быть повнимательнее. Нетрудно установить причину и следствие в простейших случаях наподобие незрелого яблока и расстройства желудка или α-частицы и ионов, но следует соблюдать осторожность с событиями, близкими по времени и удаленными пространственно, не то как бы они не попали в абсолютное где-то по отношению друг к другу.

В атомной физике вы встретитесь с еще одним сомнением в отношении причины и следствия. Радиоактивные превращения оказываются подвластны чистой случайности: время существования индивидуального атома непредсказуемо. В последней главе вы увидите, что природа переносит частичную невозможность предсказаний на все наши знания, снабжая индивидуальные атомные явления некой неопределенностью, в свете которой бессмысленно ожидать однозначных следствий при определенной «причине».


Преобразования Лоренца как вращения

Фиг. 468 и 169 позволяют пролить новый свет на преобразования Лоренца, если сравнить их с простым вращением осей х и у. Воспользуемся алгеброй и найдем «преобразования», связывающие старые координаты точки с новыми координатами


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.