Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [191]

Шрифт
Интервал

', у' той же точки.



Фиг. 168.Диаграмма пространства-времени по Эддингтону.

>Наблюдатель ε находится в начале координат, так же как и наблюдатель ε', который быстро движется вдоль оси х относительно ε. Линия «вижу сейчас» описывается уравнением x = — ct и отмечает все события, которые ε (или ε') видят сейчас. Зная величину скорости света с, ε следит за временем его распространения и размечает свою ось событиями, которые происходят сейчас вдоль оси х. Однако, для той же линии «вижу сейчас» поправки ε' будут другими и линией «сейчас» он называет свою ось х'. Продолжение линии «вижу сейчас» в направлении положительного времени дает максимальный наклон, который получается у ε' для линии «сейчас», ибо ε' не может двигаться с относительной скоростью, большей с, а его линия поэтому никогда не может наклониться больше «световой» линии с наклоном с. Покрутите эту картинку вокруг оси t, и световая линия даст вам двойной конус

>Допустим что событие Р произошло вначале координат, в точке «здесь, сейчас», а другое событие — в точке Q. Если Q находится внутри верхнего светового конуса (Q1), оно явно находится в будущем для всех наблюдателей. Аналогично всякое событие внутри нижнего светового конуса (Q2) находится в абсолютном прошлом, для всех наблюдателей Q2, происходит раньше Р. Но Q3 в пространстве между конусами может быть будущим для ε и тем не менее прошлым для наблюдателя ε', так как его ось наклонна. Поэтому мы называем такую промежуточную область «абсолютным где-то». Если Q попадет туда, ни Р, ни Q не могут быть причиной друг друга, они просто происходят в разных местах.




Фиг. 169.Диаграммы пространства (в одном измерении) и времени.

>а — некое событие, происходящее на прямой линии (оси х), изображено точкой. Расстояние вдоль оси х показывает, где произошло событие, а высота показывает, когда оно произошло. Событие Р предшествует по времени событию Q. Для некоторой пары событий можно утверждать, что Р является причиной Q;

>б — для движущегося наблюдателя начало отсчета переносится вместе с ним. В галилеевой системе он пользуется тем же масштабом времени, что и неподвижный наблюдатель.

>в — при преобразованиях Галилея лилии каждого часа для двух наблюдателей одни и те же и параллельны линии t = 0;

>г — преобразования Лоренца поворачивают оси одной координатной системы пространства-времени по отношению к другой (хотя и на пренебрежимо малый угол, за исключением случаев, когда относительная скорость ε и ε' приближается к c).


Спроектируем точку на оси х и у (фиг. 470).



Повернем теперь оси на угол A (вокруг оси z). По отношению к новым осям координаты точки будут x', у'. Обозначим символом s наклон новой оси х, так что s = tg А. Теперь видно, что

x' = (x + b)∙cos A = (x + y∙tg A)∙cos A =

= (x + sy)/sec A = (x + sy)/√(1 + tg>2A),

т. е.

x' = (x + sy)/√(1 + s>2)

Подобным же образом

y' = (ysx)/√(1 + s>2)

Преобразования при простом вращении осей показывают, что квадратный корень играет здесь ту же роль, что и в преобразованиях Лоренца. Действительно, мы получим лоренцеву форму преобразований, если вместо у возьмем t, умноженное на постоянную с и на i [квадратный корень из (—1)], а вместо наклона s возьмем i(v/c). Если y = ict, y' = ict', a s = iv/c, то преобразования вращения превратятся в преобразования Лоренца. Проверьте это. Отсюда видно, что преобразования Лоренца можно рассматривать как расслоение пространства-времени линиями разного наклона для разных наблюдателей.


Инвариантный «интервал» между двумя событиями

Определим «интервал» между двумя событиями (x>1, t>1) и (x>2, t>2) по теореме Пифагора:

R>2 = (x>1x>2)>2 + (ict>1ict>2)>2

Затем можно записать выражение для «интервала» R' для другого наблюдателя, который в своих координатах связывает те же два события в точках (x'>1, t'>1) и (x'>2, t'>2). Воспользуемся преобразованиями Лоренца и выразим R' через координаты первого наблюдателя. Тогда мы обнаружим, что R' совпадает с R. Преобразования Лоренца оставляют «интервал» неизменным. Это и составляет утверждение теории относительности — измерения с всегда дают одну и ту же ее величину.

Роль скорости с иллюстрируется историей, предложенной Джоном А. Уилером. Допустим, что обитатели некоего острова проводят все свои измерения в прямоугольной системе координат, но расстояние по оси, идущей с севера на юг, они измеряют в километрах, а с запада на восток — в метрах. Затем неожиданный сдвиг магнитного поля Земли на угол А вынуждает их повернуть свои оси в новом направлении. Однако они по-прежнему продолжают мерить расстояния С'—Ю' в километрах, а 3'—В' в метрах. Попытавшись вычислить расстояние между двумя точками по теореме Пифагора R>2 = (Δx)>2 + (Δy)>2, они обнаруживают, что в новых координатах R стало другим. Затем они открывают, что для обоих наборов осей значение R получается одним и тем же (которое к тому же полезно), если определить R>2 = (Δx)>2 + (1000∙Δy)>2. Этот «таинственный» множитель 1000 соответствует c в релятивистском интервале. Вывод таков: с не столько таинственная предельная скорость, сколько множитель, связанный с единицами измерения, который говорит, что время и расстояние не отличаются в корне друг от друга, а образуют однородное множество, в котором и то и другое можно измерять метрами.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.