Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [105]

Шрифт
Интервал


Задача 5. Скорость звука

Мы считаем, что звук переносится волнами сжатия и разрежения, причем изменение плотности и движение передаются от одной молекулы к другой благодаря соударениям. Если воздух действительно состоит из движущихся молекул, то что вы можете сказать об их скорости, зная, что измерения скорости звука в воздухе дают величину 340 м/сек?


Задача 6. Броуновское движение

Поглядев в микроскоп на дым, вы увидите быструю пляску больших частиц пепла и бешеную — маленьких.

а) Частицы могут быть настолько малы, что их не видно. Каково их движение?

б) Считая молекулы еще меньшими частицами пепла, что можно сказать об их движении?


Обе задачи просто имеют общее решение. А вот опыт, который показывает, насколько быстро движутся молекулы газа.


Опыт 2. На дно тонкой стеклянной пробирки выпускается жидкий бром[134]. Жидкость немедленно испаряется, и бурый пар, или «газ», медленно расползается по трубке. Затем тот же эксперимент повторяется с пробиркой, из которой выкачан воздух. Теперь освобожденные пары брома движутся очень быстро. (Молекулы брома движутся столь же быстро и в воздухе, но распространение газа замедляется множеством столкновений с молекулами воздуха.)



Фиг. 10.Движение молекул брома.

>а — диффузия брома в воздухе; б — бром, выпущенный в вакуум; в — капсула 


Прямые измерения

Настоящей проверкой должны служить прямые измерения. Скорость молекул измерялась несколькими экспериментаторами. Мы рассмотрим типичный эксперимент, проделанный Цартманом.




Фиг. 11.Прямое измерение скоростей молекул.

>а — схема опыта Цартмана; б — различные стадии вращения барабана; в — развернутый образец пленки

>1 — метки от молекул различных скоростей, 2 — нулевая метка, сделанная молекулами при неподвижном барабане.


Опыт 3. Пучок молекул пропускался через прорезь в цилиндрическом барабане, который мог быстро вращаться. Это были молекулы висмута, которые испарялись в вакууме из жидкого расплава в маленькой печи. Затем серия экранов с прорезями выделяла узкий пучок, который попадал в барабан. При каждом повороте щель барабана пропускала только небольшую порцию движущихся молекул. Когда барабан покоился, молекулы пролетали к противоположной стенке барабана и создавали отметку на пленке, расположенной за щелью. При вращении барабана пленка за время пролета молекул через барабан перемещалась на заметное расстояние и метка сдвигалась в новое положение. По этому сдвигу метки, диаметру барабана и скорости его вращения вычислялась скорость молекул. Когда пленка была извлечена из барабана, то на ней оказалась резкая центральная метка из осевшего металла, а метка, возникшая при вращении, имела вид размазанного пятна, которое говорило, что скорости молекул не были одинаковыми, а были разбросаны в довольно широкой области. Молекулы газа движутся хаотически, испытывая столкновения, и следует ожидать, что в любой момент имеется довольно разнообразный набор скоростей. В предсказаниях же кинетической теории фигурирует средняя, точнее, средняя квадратичная скорость √(v>¯2). Распределение скоростей относительно средней можно предсказать о помощью математической статистики случайных событий.

В опыте Цартмана пучок горячих молекул пара будет обладать тем же распределением скоростей с пиком при величине, характеризуемой температурой. Измерения потемнения пленки дали в точности такое же распределение и среднюю величину, очень хорошо согласующуюся с предсказанной простейшей теорией (фиг. 12)[135].



Фиг. 12.Результаты опыта Цартмана.

>Кривая характеризует плотность почернения (экспериментальные результаты). Крестиками показаны значения, предсказываемые кинетической теорией газов на основе статистики.


Скорости молекул в других случаях. Диффузия

Взвешивание бутылки водорода или гелия при атмосферном давлении и комнатной температуре показывает, что эти газы менее плотны, чем воздух; углекислый газ более плотен. Поэтому, согласно нашему предсказанию, pV = >1/>3Mv>¯2, молекулы водорода и гелия движутся быстрее молекул воздуха (при той же температуре), а молекулы углекислого газа — медленнее. Вот что получается на самом деле.



Задача 7. Скорости

а) Если молекулы кислорода при комнатной температуре движутся со скоростью около 400 м/сек, то с какой скоростью движутся молекулы, водорода?

б) Какова средняя скорость молекул гелия по сравнению с молекулами водорода при той же температуре? (Найдите отношение «средних» скоростей.)

в) Какова скорость молекул углекислого газа по сравнению с молекулами воздуха при той же температуре? (Найдите отношение «средних» скоростей.)


Задача 8

Рискните угадать[136], будет ли скорость звука в гелии той же, что и в воздухе. А может быть больше или меньше?

Проверьте вашу догадку, наполнив органную трубу сначала воздухом, а затем гелием (или углекислым газом), или же вдохните гелий, а затем попробуйте сказать что-нибудь. (Рот и нос работают как миниатюрная органная труба.) Изменение скорости звука изменяет время, необходимое для прохождения звука от одной стенки трубы до другой, и изменяет таким образом частоту колебаний звука, повышая частоту основного тона.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.