Физика для любознательных. Том 1. Материя. Движение. Сила - [9]
Фиг. 3. Символический эксперимент Галилея.
Честное экспериментирование и авторитеты
Из опытов, которые вы проделали сами, не следует, что все тела падают одинаково; из них не следует даже, что большой и маленький камни падают строго одинаково, и если, повинуясь книге или словам преподавателя, вы сказала бы, что все тела падают строго одинаково, вы обманули бы себя, поступившись честной наукой.
Мелкие камни слегка отстают в падении от крупных, и разница становится тем более заметной, чем большее расстояние пролетают камни. И дело тут не просто в размере тел: деревянный и стальной шары одинакового размера падают не строго одинаково.
Приняв точку зрения Галилея, согласно которой простому описанию падения тел мешает сопротивление воздуха, вы сразу же легко сможете объяснить свои наблюдения, хотя при этом еще нужно будет исследовать сопротивление воздуха. Можно предположить, что вы никогда не слышали о точке зрения Галилея и пришли к ней, проделав серию опытов со все более и более плотными телами. Обнаружив, что по мере увеличения размеров тел или плотности материала, из которого они сделаны, движение тел оказывается более одинаковым, вы могли бы на основе некоторого предположения сформулировать правило и для идеального случая. Чтобы разобраться в обвинении, выдвигаемом против сопротивления воздуха, можно было бы попытаться уменьшить его, используя обтекание такого предмета, как, скажем, лист бумаги.
Предположение Галилея; решающий эксперимент Ньютона
Галилей мог лишь уменьшить сопротивление воздуха, но не мог устранить его полностью. Поэтому ему пришлось вести доказательство, переходя от реальных наблюдений с постоянно уменьшающимся сопротивлением воздуха к идеальному случаю, когда сопротивление воздуха отсутствует. Этот скачок от реальных наблюдений к идеальному случаю явился замечательным вкладом Галилея в науку. Позже, оглядываясь назад, он смог «объяснить» различия в реальных экспериментах, приписав их сопротивлению воздуха. Галилею удалось даже изучить сопротивление воздуха, определить его характеристики и понять, каким образом его можно учесть. Вскоре после Галилея были созданы воздушные насосы, которые позволили произвести эксперименты со свободным падением в вакууме. С этой целью Ньютон выкачал воздух из длинной стеклянной трубки и бросал сверху одновременно птичье перо и золотую монету. Даже столь сильно различающиеся по своей плотности тела падали с одинаковой скоростью. Именно этот опыт дал решающую проверку предположения Галилея.
Научные объяснения
Когда мы «объясняем» различие в падении тел сопротивлением воздуха, то, как это часто бывает в науке, «объяснить» означает указать на сходство между исследуемым фактом и каким-то другим, уже известным фактом. По существу мы говорим: вы знаете о сопротивлении ветра, когда вы перемещаете какой-нибудь предмет в воздухе. Так вот, падающие тела испытывают сопротивление ветра, которое каким-то образом зависит от их объема. Деревянный и свинцовый шары одного размера, двигаясь с одинаковой скоростью, испытывали бы одинаковое сопротивление воздуха (откуда воздуху известно о том, что находится внутри шара?). Но свинцовый шар весит больше, притягивается сильнее, поэтому сопротивление воздуха имеет для него меньшее значение по сравнению с притяжением Земли[12].
Дальнейшие исследования
Это объяснение ведет к целой цепи новых исследований: действия ветра на летящее тело, трения в жидкости, обтекания тел.
Результаты изучения этих явлений находят приложение в баллистике и самолетостроении. Из более детального и строгого изучения правила поведения тел, из исследования нарушений этого правила возникает новая наука.
Вы могли бы продолжить опыты в другом направлении, создавая все большее сопротивление, используя сначала воздух, потом воду, и установить факты, имеющие важное значение для конструирования кораблей и самолетов. Простые опыты с трением в жидкости можно проделать, бросая небольшие шары в воду.
Шары разных размеров падают неодинаково. Более того, скорость шаров перестает возрастать после того, как они пролетают некоторое расстояние. Каждый шар, по-видимому, достигает постоянной скорости, а затем совершает равномерное движение вниз с этой скоростью. А что же дальше? Дальнейшие исследования привели бы вас к закону Стокса для трения, действующего в жидкости на движущийся шар (этот закон играет важную роль при измерении заряда электрона).
Исследуя падение более мелких тел (таких, как пылинки или капельки тумана), вы обнаружили бы в их движении удивительные нерегулярности, изучение которых в свою очередь могло бы дать ценные сведения из области атомной физики.
Опыты и рассуждения Галилея, которые вы повторили, привели к простому правилу, точно справедливому в случае свободного падения тел в вакууме. Это правило в случае свободного падения тел в воздухе выполняется с ограниченной точностью.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.