Физика для любознательных. Том 1. Материя. Движение. Сила - [7]

Шрифт
Интервал

ли луч света волной?», а говорим: «Ведет ли себя луч света, как волна?» И тогда мы вправе ответить: «В одних обстоятельствах — да, в других — нет». Там, где последователь Аристотеля утверждал бы, что электрон должен находиться либо внутри некоторого ящика, либо вне его, мы предпочли бы сказать, что электрон находится и там и там! Если вы сочтете, что подобные осторожные высказывания парадоксальны и способны лишь вызвать раздражение, вспомните две вещи: во-первых, вы воспитаны на аристотелевой традиции (и, возможно, было бы вполне благоразумно поставить под сомнение ее высокий авторитет); во-вторых, физики сами испытывали такое же смущение, как вы, когда эксперименты впервые вынудили их в какой-то степени изменить свои взгляды, но они предпочитают быть верными в большей степени эксперименту, нежели формальной логике.


Аристотель и авторитет

Аристотель интересовался главным образом философией и логикой. Он писал также научные трактаты, суммируя знания, которыми располагало человечество в его время, т. е. около 2000 лет назад. Труды Аристотеля по биологии были хороши потому, что носили главным образом описательный характер.

В своих трудах по физике Аристотель слишком много занимался основополагающими законами и последующими «логическими» рассуждениями на основе этих законов. Аристотель и его последователи стремились объяснить, почему происходят те или иные явления, но не всегда заботились о том, чтобы пронаблюдать, что происходит или как происходит. Аристотель весьма просто объяснял причины падения тел: он говорил, что тела стремятся найти свое естественное место на поверхности земли. Описывая, как падают тела, он высказывал утверждения вроде следующих: «…точно так же, как направленное вниз движение куска свинца или золота или любого другого тела, наделенного весом, происходит тем быстрее, чем больше его размер…», «одно тело тяжелее другого, имеющего тот же объем, но движущегося вниз быстрее…».

Аристотель с большим искусством обсуждал как философ причины падения тел и, вероятно, имел в виду более общий аспект изучения падающих тел, зная, что камни падают быстрее, чем птичьи перья, а куски дерева — быстрее, чем опилки. При продолжительном падении тело под действием трения о воздух начинает двигаться с постоянной скоростью, и, возможно, Аристотель имел в виду именно это обстоятельство[6].

Однако последующие поколения мыслителей и учителей, которые, пользовались книгами Аристотеля, толковали его утверждения неверно и учили тому, что «тела падают со скоростью, пропорциональной их весу».

Средневековые философы еще больше увлекались рассуждениями и пренебрегали экспериментальной проверкой. Большинство ранних трудов по геометрии и алгебре было утеряно, и экспериментальной физике пришлось ждать, пока их не нашли и не перевели. На протяжении всей эпохи средневековья труды Аристотеля были непререкаемы, причем в неправильном толковании. Простые люди, подобно детям, любят уверенность; они готовы слепо поклоняться авторитету и проглатывать его учение целиком. Вы улыбнетесь при этом и скажете: «Мы — цивилизованные люди, мы так не поступаем». Но вы можете тут же спросить: «Почему эта книга не сообщает нам факты и не излагает прямо необходимые законы с тем, чтобы мы могли быстро изучить настоящую науку?»

А ведь это-то и выражало бы вашу потребность в непреложном авторитете и спокойной уверенности! Мы теперь осуждаем «аристотелев догматизм» как ненаучный, но имеются еще люди, предпочитающие выносить суждения по написанному в книге, вместо того чтобы посмотреть, что же происходит на самом деле. Современный ученый — реалист; он ставит эксперименты и твердо придерживается полученных результатов, даже если они идут в разрез с тем, что ожидалось.


Логика и современная наука

Тяга к логике Аристотеля может ограничить кругозор, и использование этой логики в средние века, несомненно, тормозило развитие науки; но сама по себе логика — важный инструмент всякой подлинной науки.

Нам приходится размышлять индуктивно, как это делал Аристотель, и переходить от экспериментов к простым правилам. Мы часто считаем эти правила справедливыми вообще и переходим от них к предсказаниям и объяснениям. Некоторые наши аргументы базируются на логике алгебры, другие следуют правилам формальной логики, а иногда оказываются весьма произвольными.

Выводя научные правила из установленных ранее законов, мы верим в «неизменность природы»: мы верим, что то, что происходит в пятницу и в субботу, произойдет и в воскресенье или что некое простое правило, справедливое для нескольких различных спиральных пружин, действует и для остальных пружин[7].

Помимо всего прочего, мы полагаемся на согласие выводов разных наблюдателей. Именно это отличает иллюзии и галлюцинации, с одной стороны, и науку — с другой. Иллюзии у всех разные, тогда как научные результаты одинаковы у многих наблюдателей. В самом деле, ученые часто отказываются признать открытие, пока его не подтвердит ряд экспериментаторов.

Ученые идут дальше предположения о том, что природа проста, что существуют правила, которые могут быть установлены; они предполагают также, что к тому, что происходит в природе, можно применять логику. В этом заключается то, что помогло науке родиться из суеверий, — все укрепляющееся убеждение в том, что


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.