Физика для любознательных. Том 1. Материя. Движение. Сила - [11]

Шрифт
Интервал

Тем не менее в известном смысле оно сходно с нашей современной точкой зрения. Аристотель просто говорил: «Тела падают. Это естественно». Однако он развивал свою схему слишком далеко. Он объяснял, что плывущие над нами облака поднимаются кверху, потому что их естественное место — наверху, в небе, и упускал таким образом из виду некоторые простые факты о плавучести[14].

Аристотель много занимался установлением «естественного места» и «естественного пути». Он различал «естественное движение» (падающих тел) и «насильственное движение» (брошенных тел). Он мог бы создать учение о силах и движении, если бы не ошибка, связанная с перенесением на все движения обывательского представления о лошади, тянущей телегу. Если лошадь развивает постоянное усилие, телега движется с постоянной скоростью. Это, по-видимому, и привело Аристотеля к представлению о том, что для поддержания постоянной скорости движущегося тела необходима постоянная сила, причем большая сила поддерживает большую скорость. Это разумное объяснение для случая, когда телу приходится преодолевать силу сопротивления. Однако оно приводит к заблуждению в случае свободного падения тел. Это объяснение не учитывает силы сопротивления и не дает возможности увидеть, что происходит, когда нет сопротивления.

Чтобы объяснить движение летящего тела, греки представляли, что оно поддерживается «напором воздуха», а для объяснения движения звезд и планет им потребовались еще более таинственные силы. Согласно представлениям греков, чтобы сохранить неизменным движение, необходим толчок. Стрела, пока она не отделилась от лука, движется под действием толчка, создаваемого тетивой. Для объяснения движения летящей стрелы потребовалось призвать на помощь еще одну силу. Философы — последователи Аристотеля рассматривали напор воздуха, толкающий стрелу, не просто как порыв ветра, движущийся вместе с нею, а как циркуляцию воздуха, при которой воздух впереди стрелы расталкивается в стороны и, обтекая стрелу, толкает ее сзади.

Этот напор воздуха с успехом предотвращал образование бессмысленного вакуума за стрелой.

Представление о напоре воздуха, дополненном начальными возмущениями, утвердилось настолько прочно, что им воспользовались как доводом при доказательстве невозможности движения в вакууме падающих тел. В вакууме, где сопротивление отсутствует, любая сила поддерживала бы движение с бесконечной скоростью, рассуждали греки, поэтому вакуум невозможен. Бог никогда не мог бы создать вакуум. Сам Аристотель понимал, что в вакууме все предметы падали бы одинаково, но он тоже рассматривал это как доказательство невозможности существования вакуума.


Масса

Чем бы в действительности ни было земное тяготение, все тела, если не учитывать влияния сопротивления воздуха, падают одинаково. Это приводит к удобному представлению, с которым мы будем встречаться снова и снова, — к представлению о массе.

Предположим, что у нас имеются два куска свинца, весом 1 и 0,5 кГ. Держа их в руках, мы чувствуем, что большой кусок притягивается сильнее, ощущаем его больший вес. Именно поэтому нам кажется, что он будет падать быстрее. В действительности же это не так. Должен существовать какой-то другой фактор, нечто такое, что приходится преодолевать удвоенной силе веса. Основанием для такого предположения служит тот факт, что движение должно сообщаться вдвое большему количеству свинца. К свинцовой чушке вдвое большего размера, содержащей вдвое большее количество свинца, необходимо приложить удвоенную силу притяжения, чтобы привести в такое же движение. Галилей ощупью подошел к представлению о количестве вещества, которое мы называем массой, но четко это было сформулировано лишь Ньютоном. Представление о массе понять не просто, но мы будем много раз к нему возвращаться, ибо оно играет в физике очень важную роль.

Сейчас мы обратим внимание на замечательный факт: независимо от материала, из которого состоит тело, притяжение силы тяжести в точности пропорционально количеству притягиваемого вещества. Земное тяготение, эта таинственная сила, притягивает без всяких различий любое тело, из чего бы оно ни состояло, притягивает два кирпича вдвое сильнее, чем один, 4 м>3 свинца в 4 раза сильнее, чем 1 м>3. Таким образом, на тело, в котором заключено больше вещества, действует большая сила притяжения, и при свободном падении его движение будет таким же, как движение меньшего тела.


Поле силы тяжести

Это обстоятельство, в котором мы убеждаемся повсюду, мы называем наличием тяготения, способностью притягивать тела. Мы говорим, что существует поле силы тяжести. Придумывая новый термин[15], мы ничего нового не объясняем, но впоследствии он будет нам полезен.

В данный момент вы должны представлять себе поле силы тяжести как способность притянуть к Земле, заставить падать (с пропорционально возрастающей силой) любое тело, помещенное в это поле. То же самое происходит с кусочками железа вблизи магнита: магнитное поле способно притянуть их. В трубке вашего телевизора электрическое и магнитное поля ускоряют летящие электроны и быстро перемещают по экрану пучок, создающий изображение.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.