Физика для любознательных. Том 1. Материя. Движение. Сила - [79]

Шрифт
Интервал

сила (фиг. 139).



Фиг. 139.Старый вопрос и современный ответ.


Даже если к летящему пушечному ядру приложить две силы — одну, тянущую вперед, а другую, тянущую назад, то при равенстве нулю результирующей силы горизонтальное движение ядра останется неизменным (фиг. 140).



Фиг. 140.Силы, действующие на тело, не влияют на движение, если сумма этих сил равна нулю.


Ниже приведено описание некоторых опытов. Проведение опытов иллюстрируется на фигурах и зависит от имеющегося в наличии оборудования.


ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Опыт 1. Движение тела в отсутствие результирующей силы (мечта конькобежцев). Честно продемонстрировать такое движение невозможно. Мы не способны осуществить движение тела, на которое заведомо не действовала бы никакая сила.

Мешают тяготение, трение или неумение логически мыслить. Мы можем лишь продемонстрировать опыты, иллюстрирующие наше направление мысли, и в идеальном случае (который сам по себе представляет воображаемый эксперимент) экстраполяцию всех реальных случаев[88]».

Правило «нет силы — движение постоянно» применимо независимо от того, есть ли трение или нет. Мы стремимся проводить эксперименты в отсутствие трения только для того, чтобы продемонстрировать это правило, поскольку трение трудно измерить и ввести на него поправку.

Опыт 1(а). Понаблюдайте за шаром, катящимся по горизонтальной поверхности стола. К сожалению, шар замедляет движение и останавливается: мы виним в этом трение. (Правда, катящийся шар используется и для проверки горизонтальности стола, поэтому есть опасность, что при доказательстве получится порочный круг. Однако этого можно избежать, если разумно провести опыт.)


Задача 1. Научное объяснение против черной магии

Откуда вы знаете, что катящийся шар останавливает трение, а не нечистая сила? Предложите эксперименты для проверки или подкрепления вашей точки зрения. (Это задача, которая на первый взгляд кажется шуткой, поднимает серьезный вопрос о природе научных объяснений и законов. Попытайтесь логически построить защиту, но помните, что адвокат нечистой силы сможет настаивать на целом ряде свойств последней.)


Опыт (1б). Большой кусок «сухого льда» (твердая двуокись углерода) скользит по горизонтальной поверхности стола, покрытого алюминием или стеклом. Сухой лед отделен от поверхности стола газовой подушкой — слоем газообразной двуокиси углерода, которая все время подогревается столом. Сухой лед значительно холоднее обычного тающего льда, поэтому стол оказывается для него очень горячим, и лед испаряется. Создается газовая подушка, по которой сухой лед скользит подобно куску обычного льда на разогретом солнцем тротуаре.

Опыт 1(в). «Модель железной дороги». Честно признав поражение, нанесенное нам силами трения, мы можем создать модель железной дороги, в которой трение было бы компенсировано наклоном рельсов (фиг. 141).



Фиг. 141. «Первый закон Ньютона».

>Тележка на рельсовом пути с компенсированным трением.


На вагончик, стоящий на рельсах с очень небольшим уклоном, действует некоторая доля земного притяжения; эта сила тянет вагончик вниз под уклон, и можно так подобрать угол наклона, чтобы небольшая сила, действующая в сторону уклона, как раз компенсировала силу трения. Затем сообщим вагончику начальную скорость мгновенным толчком и посмотрим, как он движется. Это не вполне честный опыт. В самом деле, откуда мы знаем, насколько нужно наклонить рельсы? Тем не менее очень интересно смотреть, как вагончик медленно катится по рельсам при почти невидимом уклоне. Действительно, мы считаем, что результирующая сила равна нулю. Притяжение Земли при определенном положении рельсов и сила торможения, обусловленная трением, при векторном сложении в сумме дают нуль. Если толкнуть вагончик сильнее, то он будет двигаться, все время сохраняя новое значение скорости. Вагончик, нагруженный песком или металлом, после толчка опять-таки движется равномерно. Если не производить измерений, то этот опыт неубедителен, он позволяет судить скорее о трении, чем о движении в отсутствие силы, но модель дороги с компенсированным трением пригодится нам в дальнейших экспериментах.

Опыт 1(г). Мы сталкиваемся с примерами прямолинейного движения, анализируя траектории тел, движущихся с большой скоростью: ружейная пуля движется настолько быстро, что на небольшой длине полета дули расстояние по вертикали, пройденное ею в падении, оказывается незаметным. Это говорит о том, что траектория близка к прямой, но никоим образом не убеждает в постоянстве скорости. Можно пропустить пучки электронов (и других атомных частиц), Движущихся еще быстрее, через проделанные булавкой проколы в нескольких перегородках в длинной трубке (фиг. 142).



Фиг. 142.Поток электронов в отсутствие внешних сил движется по прямой линии.


Если отверстия расположить не по прямой линии, то пучок не пройдет[89].

Быстрые атомные частицы, проходя через чувствительный слой эмульсии, которой покрывают фотопластинки, оставляют черный след. Проходя через фотографические пленки под малым углом к поверхности, они оставляют черточки, очень близкие к отрезку прямых (посмотрите фотографии эмульсий со следами электронов, протонов и других частиц, происхождение которых связано с космическими лучами).


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.