Физика для любознательных. Том 1. Материя. Движение. Сила - [78]

Шрифт
Интервал

>2 и убедились бы в том, что она постоянна). Теперь с помощью двух идентичных пружин, прикрепленных рядом, «в параллель», и растянутых на одинаковую длину, соответствующую стандартному удлинению, приложим удвоенную силу, 2 странга. Мы получим удвоенное ускорение. Ускорение возрастает в той же пропорции, что и сила.



Фиг. 137. Единичное (а) и удвоенное (б) ускорение.


Чтобы приложить к исследуемому телу всевозможные силы величиной 1, 2, 3, 4… странга, возьмем несколько одинаковых пружин[86]. Затем сообщим телу ускорение силой 1 странг, 2, 3…, ускорения должны находиться в пропорции 1:2:3., значит для данного тела ускорение возрастает в такой же пропорции, что и ускоряющая сила, т. е. a ~ F.



Фиг. 138.Удвоенные и утроенные массы.

>а — постоянная сила сообщает телу постоянное ускорение; >б — при неизменной массе ускорение пропорционально силе; >в — при неизменной силе ускорение пропорционально 1/М.


До сих пор мы всегда прикладывали силу к одному и тому же телу. Перейдем теперь к другим телам, другим количествам движущегося вещества, к удвоенной и утроенной массе. Возьмем несколько идентичных тел (тележек или кусков льда). Чтобы получить удвоенную массу, свяжите две тележки (или поставьте одну на другую) и приложите силу 1 странг. Затем соедините три одинаковых тела и приложите к ним эту силу. При удвоенной массе мы должны получить половину ускорения, при утроенной — одну треть ускорения. Ускорение убывает в такой же пропорции, в какой возрастает масса, т. е, а ~ 1/М, где М измерено путем подсчета числа тележек. Это соотношение труднее себе представить, поэтому зададим вопрос по-иному: как следует изменить силу, чтобы сообщить разным массам одинаковое ускорение! Телу с удвоенной массой 1 странг сообщает половину ускорения, поэтому первоначальное ускорение этому телу должны сообщить 2 странга. В таком случае, чтобы сообщить одинаковое ускорение единичной массе, удвоенной массе и утроенной массе, к ним нужно приложить силы, которые находятся в пропорции 1:2:3. Силы, которые нужно приложить, пропорциональны массам F ~ M. Здесь, говоря о массе, мы имеем в виду количество вещества, которому нужно придать ускорение, количество одинаковых тележек (или кусков льда).

Резюме

Итак, мы получили два важных соотношения:

1) При неизменной массе

(Ускорение) ~ (Сила), или (Сила) ~ (Ускорение).

2) При неизменном ускорении (Сила) ~ (Масса).

Эти соотношения можно объединить в одно[87]

СИЛА ~ МАССА∙УСКОРЕНИЕ

или

СИЛА = (ПОСТОЯННАЯ)∙МАССА∙УСКОРЕНИЕ.


Второй закон движения Ньютона

Снова представим себе, что мы можем прикладывать постоянные силы к движущимся массам и точно измерять ускорения. Кроме того, предположим, что сила наших пружин — это единственная действующая на тело горизонтальная сила, которая, таким образом, является результирующей силой. Приведенное нами соотношение

РЕЗУЛЬТИРУЮЩАЯ СИЛА ~ МАССА∙УСКОРЕНИЕ

действительно справедливо. Это великий второй закон движения Ньютона (который включает первый закон Ньютона и предполагает выполнение его третьего закона при любой экспериментальной проверке).

Этот закон, связывающий силу, ускорение и массу, чрезвычайно важен для последующих разделов физики. Он подтверждается экспериментально для движения всех больших тел, от детских автомобилей и теннисных мячей до реактивных самолетов и планет; мы распространим его, кроме того, на атомы, электроны и ядра.

Чтобы понять этот закон и научиться им пользоваться, нужно уяснить его экспериментальную основу и исходные определения.

Поэтому очень важно посмотреть опыты. Прежде чем описать некоторые демонстрационные опыты, рассмотрим частный случай F = 0.


Нет сил — движение неизменно: первый закон Ньютона

Если F ~ Ma, то в частном случае F = 0 ускорение должна быть равно нулю, т. е. движение должно продолжаться без изменений. К этому выводу можно прийти, анализируя движение снаряда: вертикальное ускорение есть результат действия земного притяжения, в горизонтальном движении также следует усматривать результат действия некой горизонтальной силы. Помимо сопротивления воздуха (которое в идеальном случае не участвует), никаких горизонтальных сил нет. Тем не менее пушечное ядро продолжает двигаться вперед с постоянной горизонтальной скоростью.

Значит, можно предположить, что если на тело не действует никакая сила, то его скорость остается неизменной. В таких случаях горизонтальное ускорение равно нулю, но скорость не должна быть раина нулю: она может сохранять любое постоянное значение.

Поэтому физики говорят, что для поддержания неизменным равномерного движения не нужно прилагать никакой силы. На первый взгляд это кажется абсурдным. Чтобы двигать по шероховатому полу ящик или заставить автомобиль равномерно двигаться по ровному участку дороги, необходимо прикладывать все время большую силу. Однако, утверждая это, мы исходим из ограниченного представления: мы забываем о силе трения, действующей против движения, или о сопротивлении воздуха. Если учитывать эти силы, то результирующая сила вполне может оказаться равной нулю. Но мы говорим, что тело движется с постоянной скоростью, если равна нулю


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.