Физика для любознательных. Том 1. Материя. Движение. Сила - [38]
Фиг. 58.К задаче 16.
Алгебраический- анализ. Начертите на разграфленной бумаге с координатами х и у воображаемую траекторию летящего камня и найдите ее уравнение. Предположим, что камень брошен горизонтально из начала координат (0, 0) со скоростью 5 м/сек. Тогда за каждую секунду камень перемещается в горизонтальном направлении на 5 м. По прошествии t сек после начала движения камень переместится в горизонтальном направлении на 5t м, поэтому можно записать
РАССТОЯНИЕ, ПРОЙДЕННОЕ В ГОРИЗОНТАЛЬНОМ НАПРАВЛЕНИИ, х = 5∙t м.
Через t сек камень, падая из состояния покоя, пройдет по вертикали расстояние у, определяемое формулой
РАССТОЯНИЕ, ПРОЙДЕННОЕ ПО ВЕРТИКАЛИ, y = >1/>2 УСКОРЕНИЕ t>2 = >1/>2 (9,8)∙t>2 = 4,9∙t>2 м
Эти формулы справедливы для любой стадии движения камня по его криволинейной траектории, поэтому мы можем записать
x = 5∙t
y = 4,9∙t>2
Чтобы найти одно уравнение, описывающее траекторию движения, зададим себе вопрос: «Какое соотношение между х и у обеспечивает выполнение обоих приведенных выше требований на каждом этапе движения камня?» Для любой произвольно выбранной точки на траектории значения ее координат х и у должны удовлетворять обоим приведенным выше уравнениям для соответствующего значения t. Это значение t должно быть одинаковым в обоих уравнениях — ведь это время, когда камень достигает выбранной точки.
Поэтому мы можем избавиться от t, выразив из одного уравнения t и подставив полученное выражение в другое уравнение. Проделаем это.
Уравнение x = 5∙t дает t = x/5; подставляя выражение х/5 вместо t в уравнение y = 4,9∙t>2, получаем у = 4,9∙(х/5)>2, или у = (4,9/25)∙x>2.
Уравнение траекторий движения камня будет тогда иметь вид у = 0,196∙x>2.
В более общем случае, если камень брошен горизонтально с начальной скоростью v>гор м/сек и падает с вертикальным ускорением g м/сек на сек, то
x = v>горt и y = >1/>2gt>2
Следовательно,
т. е. у = (постоянная)x>2, поскольку> 1/>2 g/v>2>гop — постоянная величина.
Это уравнение параболы[34]
Воспользовавшись подобным уравнением, можно построить на клетчатой бумаге превосходные графики параболы. Постройте на бумаге с сантиметровыми клетками кривую, описываемую уравнением y = >1/>2x>2, взяв х = — 4, —3, —2, —1, 0, 1, 2 см и т. д.
Попытайтесь подогнать траекторию движения реального тела к этой кривой. Положите лист бумаги, на котором построена кривая, на чертежную доску, расположенную наклонно к плоскости стола, и скатывайте по ней шарик или держите лист бумаги отвесно и подбрасывайте перед ним какой-нибудь небольшой предмет.
Движение снаряда, выпущенного из пушки под углом к горизонту
Если снаряд выпущен не горизонтально, а вверх, под некоторым углом к горизонту, то его траектория по-прежнему будет параболой. Алгебраически это можно показать, используя уравнение s = v>0t + >1/>2 gt>2,a не s = >1/>2gt>2. Таким образом, мы воспользуемся очевидной симметрией криволинейной траектории движения и можем сказать, что замедленное движение тела вверх до вершины траектории должно совпадать с ускоренным движением вниз, начинающимся от вершины, поэтому можно начертить всю траекторию, исходя из рассмотренной задачи движения снаряда, выпущенного горизонтально. Но все это лишь разумное предположение, хотя эксперимент подтверждает его. Можно рассуждать еще и так: двигаясь по ниспадающему участку траектории от вершины О, камень не может «знать», началось ли его движение в точке О или раньше, или позже. Поэтому камень, брошенный в какой-либо точке этого участка траектории, скажем в точке А, в сторону и вниз, должен двигаться по той же траектории, что и камень, брошенный горизонтально из вершины О, лежащей выше (фиг. 59).
Фиг. 59.Движение тела вверх и вниз.
>Симметрия траектории заставляет предполагать, что движение вверх до «отрицательной пушки» подобно движению вниз от «нормальной» пушки, стоящей на той же горе. Вместе эти движения дают полную параболу. В таком случае тело, начавшее движение по этой параболе из точки А, должно двигаться по той же траектории, как если бы движение его началось раньше из вершины О. Соображения симметрии позволяют распространить эти рассуждения на всю параболу.
То же самое справедливо для камня, брошенного вверх в точке В, Это наводит на мысль о расширении представления о независимости движений. Вертикальная компонента начального движения также остается неизменной, хотя к ней добавляется ускоренное движение свободного падения. С этим вертикальным движением, происходящим с постоянной скоростью, связано расстояние v>0t в соотношении s = v>0t + >1/>2 gt>2. Тогда можно объединить оба постоянных движения, вертикальную и горизонтальную компоненты начального броска, и сказать, что начальное движение тела, брошенного под узлом к горизонту, остается неизменным во время полета, хотя к нему добавляется движение свободного падения по вертикали, которое обусловливает появление в уравнении слагаемого >1/>2 gt>2. Итак, можно считать, что камень, брошенный, как показано на фиг. 60, совершает два движения: начальное движение вдоль прямой 45 и свободное падение, в котором камень проходит расстояния, отсчитанные от точек на прямой
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.