Физика для любознательных. Том 1. Материя. Движение. Сила - [37]

Шрифт
Интервал

: 8,00; В: 4,12; С: 3,61; D: 1,41; Е: 2,00 см. Воспользуйтесь правилами тригонометрии и найдите северную и восточную компонента каждого вектора, следуя данным ниже указаниям.

а) Какая из следующих величин представляет собой восточную компоненту вектора В?



б) Вычислите значение восточной компоненты вектора В, пользуясь таблицами тригонометрических функций (можно взять четырехзначные таблицы, но лучше трехзначные; не тратьте время на вычисления по более точным таблицам). Вычислите также северную компоненту вектора В.

Назовите обе эти компоненты Xи Y.

в) Проделайте то же самое для каждого вектора. Вычислите величину и наклон суммы векторов. Обратите внимание, что этот метод не требует вычерчивания в масштабе. Разумеется, им нельзя пользоваться, отрешившись от реальной ситуации и совсем не прибегая к чертежам. В таблицах тригонометрических функций как бы скрыты точные геометрические построения. Подобно числу π, синуса и косинусы, можно вычислить арифметически с помощью бесконечных рядов, но эти ряды, получены на основе геометрических допущений, проверенных сопоставлением с окружающим миром.



Фиг. 55.К задаче 14.


Задача 15

Воспользовавшись своими знаниями о векторах, покажите, как происходят горизонтальное и вертикальное движения летящего снаряда. На фиг. 56 показана траектория камня, брошенного в воздух. Скопируйте ее приблизительно в более крупном масштабе. Выделите ряд точек на траектории, скажем А, В, С, D, Е, и для каждой точки изобразите на чертеже горизонтальную скорость, вертикальную скорость и действительную (суммарную) скорость движения по примеру, данному для точки D.



Фиг. 56.К задаче 15.

>Скорость движения в точке D направлена по касательной к кривой в этой точке.


Анализ построения для точки D. Проведите в точке D касательную DT к траектории. Тогда действительная скорость направлена по касательной DT, Проведите из точки D отрезок горизонтальной прямой Н, который будет характеризовать горизонтальное движение. (Поскольку скорость движения камня неизвестна, считайте, что его горизонтальная скорость изображается отрезком Н, длина которого на фиг. 56 равна 1,1 см.)

Мы рассматриваем действительное движение вдоль DT как составленное из горизонтальной и вертикальной компонент, поэтому мы строим параллелограмм, представляющий собой прямоугольник, у которого Н — одна из сторон, а диагональ направлена по DT. Тогда вертикальная сторона V изображает вертикальную скорость в точке D, а диагональ R — действительную скорость движения по криволинейной траектории. Проделайте подобное построение в каждой из точек А, В, С, D, Е… на вашем рисунке (точные построения делать не нужно) и покажите, какие происходят изменения в движении. При этом не забывайте о важном свойстве горизонтального движения летящего снаряда.


Движение тел и параболы

Форму траектории движения тела можно проанализировать с помощью геометрии или алгебры.

Геометрический анализ. Предположим, что в горизонтальном направлении брошен камень. Камень проходит в своем горизонтальном движении одинаковые расстояния по горизонтали за каждую секунду, совершая в то же время ускоренное движение в вертикальном направлении. Падая, он пролетает по вертикали 4,9 м за первую секунду после начала движения, 19,6 м за первые 2 сек, 43,9 м за первые 3 сек и т. д. Нанесите на масштабную сетку положения камня в различные моменты времени. Выберите промежутки времени от начала движения, которые находятся в пропорции 1:2:3:4…. За эти промежутки времени камень в своем равномерном горизонтальном движении проходит расстояния по горизонтали, которые находятся в той же пропорции 1:2:3:4…

Однако камень, падая, проходит по вертикали расстояния, пропорциональные квадратам этих чисел, т. е. 1, 4, 9, 16…, поскольку

РАССТОЯНИЕ ПО ВЕРТИКАЛИ = >1/>2g∙(ВРЕМЯ)>2

а значения величины (время)>2 находятся в пропорции 1:4:9…

Отметьте положение камня в эти равноотстоящие друг от друга моменты времени, проведя вертикальные прямые через равные интервалы, скажем через 2 см; проведите также горизонтальные прямые на расстоянии 1 см вниз до исходного уровня, 4 см, 9 см и т. д., чтобы отметить расстояния по вертикали, пройденные камнем в падении. Тогда предсказанная траектория движения будет отмечена пересечениями вертикальных и горизонтальных прямых, как показано на фиг. 57. Это можно продемонстрировать, бросая шарики или выпуская водяные капли перед доской, на которой проведены такие прямые.



Фиг. 57.Сложение горизонтального и вертикального движений тела.

>а — горизонтальное движение (не меняется); б — вертикальное движение с ускорением силы тяжести (свободное падение); в — сложное движение.


Задача 16

Предположим, что опыт убедил нас в том, что движение тел действительно происходит по кривой, проходящей через отмеченные на сетке точки. В какой мере это убеждает нас в правильности представлений о движении в природе? В подобном опыте начальную горизонтальную скорость, сообщаемую телу, нужно выбрать так, чтобы траектория проходила по отметкам (фиг. 58, а). Предположим, мы уменьшили скорость и отметили на доске новую траекторию движения. Каким образом можно проверить, совершает ли тело такое же движение, что и прежде (фиг. 58,


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.