Физика для любознательных. Том 1. Материя. Движение. Сила - [30]

Шрифт
Интервал

Можно непосредственно проверить это предположение >[*>].

* * *

>[*>]>Полезно было бы посмотреть такой опыт. Струя из водяных капелек выпускается из форсунки и освещается вспышками света, которые повторяются с такой же частотой, как импульсы форсунки. Этот эффект можно наблюдать в кино при изображении вращающегося колеса телеги, когда промежуток времени между кадрами оказывается как раз достаточным для поворота колеса на угол, образуемый двумя спицами; при этом спицы движутся «все вместе» между кадрами, и изображение на экране кажется неподвижным. Колесо как бы проскальзывает не вращаясь. Если увеличить скорость вращения колеса на 10 % (или замедлить съемку, то будет казаться, что колесо вращается, но со скоростью, разной примерно >1/10 действительной скорости. В кино этот эффект нежелателен, однако в физике или технике такое прерывистое, или стробоскопическое, освещение часто используют, чтобы «заморозить», или замедлить, быстрое движение одинаковых предметов — спиц колеса или капелек воды. Подобное освещение можно использовать при изучении быстрых колебаний (например, звонка или струны скрипки). На фиг. 27 показана схема опыта с водяными капельками.



>Фиг. 27. Стробоскопическое освещение потока водяных капелек.


>Вода поступает из резервуара к небольшому стеклянному соплу по резиновой трубке, которая зажимается электромагнитом. Электромагнит, питаемый переменным током, сжимает трубку 120 раз в секунду (дважды за период переменного тока), в результате чего возникает струя из капелек, испускаемых с частотой 120 капелек в секунду. Струя освещается небольшим фонарем и располагается перед экраном, отбрасывая на него тень. При постоянном освещении струя кажется непрерывной. Если же между фонарем и струей расположить вращающийся непрозрачный диск с прорезью, то при освещении проходящими через прорезь вспышками света будут видны отдельные капельки. Диск с прорезью может приводиться во вращение синхронным двигателем, работающим от сети переменного тока. Тогда вспышки света будут синхронны с появлением капелек, и картина станет неподвижной. Для измерений на экран можно, кроме того, спроецировать прямоугольную сетку из проволоки.

>В простом демонстрационном опыте можно рассматривать движение шариков или водяных капель перед классной доской, вычертить и проанализировать криволинейную траекторию движения. Вы можете проделать опыт и самостоятельно, скатывая шарик по наклонной плоскости, когда он совершает движение под действием некоторой доли силы тяжести. На фиг. 28 показана схема такого опыта.



>Фиг. 28.Демонстрация и анализ движения тела, находящегося под действием некоторой доли силы тяжести.

>а — шар катится по наклонной плоскости; б — траектория движения шара, записанная на бумаге.


>Шарик движется поперек и одновременно скатывается вниз по наклонной плоскости, оставляя след при движении (для этого использована копировальная бумага). Чтобы произвести анализ движения, изобразите на листе бумаги, на котором вычерчена траектория движения, прямые с координатами

>x2 = 2x1, x3 = 3x1

>Измерьте y1, y2 и т. д. и проверьте, выполняются ли соотношения

>y2 = 2>2y1, y2 = 3>2y1 и т. д.

* * *


На фиг. 26 показана фотография шарика, брошенного в воздух, полученная при помощи серии коротких световых вспышек, следующих через равные промежутки времени.



Фиг. 26. Траектория летящего тела, сфотографированного при помощи световых вспышек.


Произведите сами измерения по траектории на фотографии, проведя линии А>1В>1, A>2B>2, A>3B>3. Вы увидите, что линии разделены равными промежутками: A>1A>2 = A>2A>3 =… Шарик поднимается по вертикали все медленнее и медленнее, а затем падает все быстрее и быстрее; в перемещении же по горизонтали он движется, не ускоряясь и не замедляясь. Горизонтальное движение летящего шарика остается неизменным.

Галилей знал об этом свойстве движущихся предметов и дал эти представления Ньютону. В течение многих столетий до него большинство ученых настаивало на том, что для поддержания постоянной скорости движения необходимо действие силы.

Это представление древних и сегодня находит отклик, если мы полагаемся на здравый смысл. Чтобы ящик двигался по полу, вам приходится его толкать; автомобиль, катящийся по горизонтальному участку пути, потребляет бензин, и двигатель каким-то образом создает постоянное усилие. Если вы оставите движущийся предмет в покое, говорили древние, то он остановится. Но для Галилея и Ньютона шероховатый пол и ветер не оставляют движущееся тело в покое: они создают силы, которые действуют на тело и препятствуют его движению (мы называем их силами трения или сопротивления воздуха). Массивное пушечное ядро, движущееся с небольшой скоростью, испытывает лишь незначительное сопротивление воздуха; оно почти предоставлено самому себе в отношении движения по горизонтали и сохраняет это движение.

Отсюда возникает новое представление о движении, согласно которому движению тела присуще нечто, что поддерживает его, пока тело не встречает противодействия. Это нечто было названо мыслителями XIV столетия в Париже и Оксфорде «импульсом». Их труды дошли до Леонардо да Винчи примерно в 1500 г., а до Галилея около 1600 г. и оказали на них влияние. Если бы существовало книгопечатание, то современные взгляды на движение, возможно, распространились бы еще за три столетия до Галилея.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.