Физика для любознательных. Том 1. Материя. Движение. Сила - [29]
Производя опыты с комком смятой бумаги, вы поймете, как возникло такое представление и почему было неразумно применять его к движению плотных пушечных ядер. Ситуация осложнялась совместным действием сопротивления воздуха и силы тяжести. Галилей не учитывал сопротивление воздуха и рассуждал, что произошло бы, если бы его не было. Пушечные ядра того времени летели столь медленно, что сопротивление воздуха играло весьма небольшую роль, и артиллеристы вполне могли с помощью правила Галилея рассчитать точное попадание в цель. Как это обычно бывает, практики долго не обращают внимания на высказывания ученых, и к тому времени, когда канониры приняли теорию Галилея, она стала уже бесполезной вследствие возросшей скорости снарядов.
Тем временем Ньютон и другие ученые создали более пригодную для практических целей теорию, в которой учитывалось сопротивление воздуха. Теперь, спустя три столетия, снаряды движутся столь быстро, что сопротивление воздуха оказывает уже очень значительное влияние на их полет. На фиг. 23 показаны траектории крупного снаряда, движущегося с большой скоростью: буквой а отмечена «идеальная» траектория в отсутствие сопротивления воздуха, как ее изобразил бы Галилей, а буквой b — действительная траектория движения в воздухе при том же наклоне ствола и той же начальной скорости. В современной баллистике для решения реальных задач с большим числом условий широко используется математика и даже электронные вычислительные машины.
Фиг. 23. Траектория полета снаряда.
>а и Ь — траектории снаряда, выпущенного с начальной скоростью 1,5 км/сек под углом 55,5° к горизонту.
Все это вопросы техники или прикладной математики, знание которых нисколько не поможет нам в изучении развития механики. Поэтому мы ограничимся простым случаем, когда сопротивлением воздуха можно пренебречь.
Галилей пытался отделить движение летящего снаряда по вертикали вверх и вниз от его горизонтального движения. Эксперимент подтверждает правильность такого подхода и показывает, что эти два движения не зависят одно от другого. Попробуйте проверить это сами. Бросьте один камень горизонтально, а другой выпустите из рук в то же мгновение, причем так, чтобы он свободно падал по вертикали. Оба камня ударятся о пол одновременна Камень В, движущийся по кривой, чтобы достигнуть пола, должен совершить такое же перемещение по вертикали, как и камень А, падающий вертикально. Оба камня тратят на перемещение по вертикали одинаковое время. Какое взаимное положение занимают камни А и В в промежуточных точках своего падения? Находятся ли они все время на одном уровне? Чтобы проверить это, совсем не нужно прибегать к помощи наблюдателей, которые следили бы за движением обоих камней на различных уровнях. Вместо этого можно «поднять» пол, сократив тем самым продолжительность падения, и повторить опыт (фиг. 24).
Фиг. 24.Сравнение двух движений.
>Свободно падающий камень А и камень В, летящий горизонтальнее находятся все время на одном уровне.
Можно поступить еще проще, выбрав исходную точку ниже, ближе к полу. Если камни А и В ударятся об пол одновременно, независимо от того, с какой высоты они сброшены, то можно с уверенностью сказать, что оба камня в своем перемещении вниз все время находятся на одном уровне. Обратите внимание, как несколькими последовательными опытами можно заменить сложный комплекс одновременных наблюдений. Полагаясь на вывод, сделанный на основе такой серии опытов, мы исходим из предположения о «единстве природы».
ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ
Опыт 1. Вертикальное и горизонтальное движения не зависят одно от другого. На фиг. 25 показан простой демонстрационный опыт: два металлических шарика выпускаются при помощи небольшой дружинной пушки. Пушка с пружиной сообщает металлическому шарику горизонтальную скорость; в тот же момент другой шарик освобождается и начинает свободно падать. Защелка освобождает толкатель, который под действием сжатой пружины движется в сторону шарика, свободно лежащего на опоре. Когда толкатель ударяет по шарику, сообщая ему горизонтальную скорость, левый конец толкателя выходит из канала внутри второго шарика, который начинает свободно падать. Оба шарика падают подобно камням А и В, о которых говорилось выше. Советуем вам внимательно последить за этим опытом и попросить, чтобы его повторили для разных высот.
Фиг. 25.Демонстрационный опыт.
Опыт 2.Горизонтальное движение остается неизменным. Летящий снаряд движется по вертикали с ускорением силы тяжести совершенно независимо от его горизонтального движения. Какова особенность горизонтального движения?
Симметричная траектория движения камня или шара дает основание считать, что горизонтальное движение не замедляется, иначе траектория походила бы скорее на кривую b на фиг. 21. Галилей, восставая против средневековых представлений, согласно которым для поддержания любого движения необходимо непрерывно прилагать силу (будь то сила земного тяготения, «нечистая сила» или порыв ветра), высказал предположение, что горизонтальное движение остается неизменным, поскольку отсутствует тяговое усилие, подобное силе земного тяготения, которое бы ускоряло или замедляло его. В одной из последующих глав вы увидите, как Галилей пришел к этому выводу путем теоретических рассуждений.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.