Физика для любознательных. Том 1. Материя. Движение. Сила - [32]
В средние века эти правила Галилея могли быть полезны в артиллерийском деле. В наше время они служат отправной точкой для современной баллистики, в которой детально учитываются такие эффекты, как сопротивление воздуха, движение Земли и даже переменная величина силы земного тяготения.
Галилей проделал воображаемые опыты на борту корабля, чтобы показать, что движение можно разложить на составляющие и что равномерное движение «лаборатории» можно не принимать во внимание. Предлагаемая ниже задача объясняет некоторые свойства относительного движения.
Задача 4 (трудная, но важная). Начало принципа относительности Галилея. Пассажир, находящийся в вагоне поезда, роняет апельсин. Апельсин падает ему на ноги. В рассуждениях, которые следуют ниже, сопротивлением воздуха можно пренебречь.
1) Представьте себе, что вагон неподвижен. Какова в атом случае траектория движения апельсина?
2) Представьте себе, что вагон движется вперед с постоянной скоростью, скажем 20 км/час. В этом случае, до того как апельсин выпал из рук, он, двигался вместе с пассажиром и вагоном с постоянной скоростью 20 км/час, направленной вперед. Таким образом, когда апельсин был выпущен из рук, он начал движение вперед со скоростью 20 км/час и стал падать.
а) Что произойдет с движением апельсина вниз с течением времени?
б) Что произойдет с движением апельсина вперед с течением времени?
в) Представьте себе, что неподвижный наблюдатель, стоящий у полотна железной дороги, смотрит в окно. Начертите траекторию апельсина, какой ее видит этот наблюдатель. Отметьте три или четыре положения падающего апельсина О>1, О>2…; отметьте соответствующие положения ног пассажира, F>1, F>2…
г) Начертите траекторию, наблюдаемую пассажиром в вагоне, отметив несколько этапов.
д) Представьте себе, что шторы в окне опущены и пассажир не может видеть того, что за окном. Считайте, что поезд движется плавно, без толчков.
Может ли пассажир на основании опытов с апельсином внутри вагона решить, что вагон движется? Если да, то какие наблюдения позволили бы ему сделать этот вывод? Если нет, то насколько реально движение вагона?
Есть ли какая-нибудь разница для пассажира (поскольку это касается экспериментов с бросанием апельсина), движется ли вагон вперед или же вся местность, лежащая за пределами вагона, движется назад? (С подобных вопросов начинается рассмотрение принципа относительности — сначала относительности медленного равномерного движения, о которой знал Галилей и которая является содержанием этой задачи, а потом относительности, которую рассматривал Эйнштейн. Следуя Эйнштейну, современные физики считают, что если эксперимент не в состоянии дать ответа на какой-то вопрос, то сам вопрос поставлен неправильно и представляет собой бессмысленную попытку доискиваться знания там, где это невозможно.)
На самом деле летящее тело не совершает отдельно горизонтального и вертикального движения. Когда тело движется по криволинейной траектории, направление его движения в любой момент совпадает с направлением касательной. Поднимаясь от А к В и С (фиг. 34), тело движется все медленнее и медленнее, а затем, падая от С до D и Е, движется все быстрее и быстрее; скорость тела при этом изменяется, поскольку изменяется под действием «земного тяготения» вертикальная составляющая.
Фиг. 34.Движение летящего тела.
Задача 5
Как видно из фиг. 26 (стр. 83), шарик за время каждой короткой вспышки оставляет небольшую метку.
а) Какую информацию можно извлечь, анализируя длины меток?
б) Какую информацию можно извлечь, анализируя направление меток?
в) Как можно по самим меткам (а не по расстоянию между ними) определить, происходит ли горизонтальное движение с постоянной скоростью?
г) Как можно по самим меткам сделать вывод относительно вертикального ускорения?
д) Верхняя метка выглядит почти как точка. Какой вид она должна иметь — точки или черточки? Почему?
е) Какое видоизменение опыта вы бы предложили, чтобы доказать ваш ответ на вопрос (д)?
ж) При фотографировании шарик не был просто брошен один раз и сфотографирован; пришлось сделать много фотографий и выбрать из них одну. Как по-вашему, по какой причине это пришлось сделать (возможную недостаточную квалификацию фотографа во внимание не принимать)?
Разложение движения по действительной траектории на горизонтальное и вертикальное (т. е. на компоненты) представляет собой искусственный прием, который принимается без доказательств. Каким правилам подчиняется разложение на компоненты, а также обратный процесс сложения компонент? Процесс сложения отдельных движений в одно движение, которое мы называем результирующим, имеет важное значение в навигации, где приходится складывать движения корабля и океанских течений или движения самолета и ветра. В следующем разделе мы займемся изучением такого сложения движений.
Геометрическое сложение
Наблюдая за полетом камня в воздухе по криволинейной траектории, никто не стал бы подразделять его на вертикальное и неизменное горизонтальное движения, а мы, как ученые, намерены проделать это разделение или анализ и обнаружить, что оба эти движения различного типа и не зависят одно от другого. Тут сразу же возникает ряд вопросов:

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.