Физика для любознательных. Том 1. Материя. Движение. Сила - [32]

Шрифт
Интервал

В средние века эти правила Галилея могли быть полезны в артиллерийском деле. В наше время они служат отправной точкой для современной баллистики, в которой детально учитываются такие эффекты, как сопротивление воздуха, движение Земли и даже переменная величина силы земного тяготения.


Полет тел и относительное движение

Галилей проделал воображаемые опыты на борту корабля, чтобы показать, что движение можно разложить на составляющие и что равномерное движение «лаборатории» можно не принимать во внимание. Предлагаемая ниже задача объясняет некоторые свойства относительного движения.


Задача 4 (трудная, но важная). Начало принципа относительности Галилея. Пассажир, находящийся в вагоне поезда, роняет апельсин. Апельсин падает ему на ноги. В рассуждениях, которые следуют ниже, сопротивлением воздуха можно пренебречь.

1) Представьте себе, что вагон неподвижен. Какова в атом случае траектория движения апельсина?

2) Представьте себе, что вагон движется вперед с постоянной скоростью, скажем 20 км/час. В этом случае, до того как апельсин выпал из рук, он, двигался вместе с пассажиром и вагоном с постоянной скоростью 20 км/час, направленной вперед. Таким образом, когда апельсин был выпущен из рук, он начал движение вперед со скоростью 20 км/час и стал падать.

а) Что произойдет с движением апельсина вниз с течением времени?

б) Что произойдет с движением апельсина вперед с течением времени?

в) Представьте себе, что неподвижный наблюдатель, стоящий у полотна железной дороги, смотрит в окно. Начертите траекторию апельсина, какой ее видит этот наблюдатель. Отметьте три или четыре положения падающего апельсина О>1, О>2…; отметьте соответствующие положения ног пассажира, F>1, F>2

г) Начертите траекторию, наблюдаемую пассажиром в вагоне, отметив несколько этапов.

д) Представьте себе, что шторы в окне опущены и пассажир не может видеть того, что за окном. Считайте, что поезд движется плавно, без толчков.

Может ли пассажир на основании опытов с апельсином внутри вагона решить, что вагон движется? Если да, то какие наблюдения позволили бы ему сделать этот вывод? Если нет, то насколько реально движение вагона?

Есть ли какая-нибудь разница для пассажира (поскольку это касается экспериментов с бросанием апельсина), движется ли вагон вперед или же вся местность, лежащая за пределами вагона, движется назад? (С подобных вопросов начинается рассмотрение принципа относительности — сначала относительности медленного равномерного движения, о которой знал Галилей и которая является содержанием этой задачи, а потом относительности, которую рассматривал Эйнштейн. Следуя Эйнштейну, современные физики считают, что если эксперимент не в состоянии дать ответа на какой-то вопрос, то сам вопрос поставлен неправильно и представляет собой бессмысленную попытку доискиваться знания там, где это невозможно.)


На самом деле летящее тело не совершает отдельно горизонтального и вертикального движения. Когда тело движется по криволинейной траектории, направление его движения в любой момент совпадает с направлением касательной. Поднимаясь от А к В и С (фиг. 34), тело движется все медленнее и медленнее, а затем, падая от С до D и Е, движется все быстрее и быстрее; скорость тела при этом изменяется, поскольку изменяется под действием «земного тяготения» вертикальная составляющая.



Фиг. 34.Движение летящего тела.


Задача 5

Как видно из фиг. 26 (стр. 83), шарик за время каждой короткой вспышки оставляет небольшую метку.

а) Какую информацию можно извлечь, анализируя длины меток?

б) Какую информацию можно извлечь, анализируя направление меток?

в) Как можно по самим меткам (а не по расстоянию между ними) определить, происходит ли горизонтальное движение с постоянной скоростью?

г) Как можно по самим меткам сделать вывод относительно вертикального ускорения?

д) Верхняя метка выглядит почти как точка. Какой вид она должна иметь — точки или черточки? Почему?

е) Какое видоизменение опыта вы бы предложили, чтобы доказать ваш ответ на вопрос (д)?

ж) При фотографировании шарик не был просто брошен один раз и сфотографирован; пришлось сделать много фотографий и выбрать из них одну. Как по-вашему, по какой причине это пришлось сделать (возможную недостаточную квалификацию фотографа во внимание не принимать)?


Разложение движения по действительной траектории на горизонтальное и вертикальное (т. е. на компоненты) представляет собой искусственный прием, который принимается без доказательств. Каким правилам подчиняется разложение на компоненты, а также обратный процесс сложения компонент? Процесс сложения отдельных движений в одно движение, которое мы называем результирующим, имеет важное значение в навигации, где приходится складывать движения корабля и океанских течений или движения самолета и ветра. В следующем разделе мы займемся изучением такого сложения движений.


Геометрическое сложение

Наблюдая за полетом камня в воздухе по криволинейной траектории, никто не стал бы подразделять его на вертикальное и неизменное горизонтальное движения, а мы, как ученые, намерены проделать это разделение или анализ и обнаружить, что оба эти движения различного типа и не зависят одно от другого. Тут сразу же возникает ряд вопросов:


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.