Физика для любознательных. Том 1. Материя. Движение. Сила - [16]

Шрифт
Интервал

и В, в которых определяются скорости, другие для измерения того времени, когда картон проходит мимо пункта А, и третьи — для таких же измерений в пункте В.

Приведенная ниже задача иллюстрирует расчет ускорения.


Задача 5

Предположим, что длина картона, укрепленного на тележке, равна 60 см, а затемнение в пункте А продолжается 0,30 сек. Какова скорость тележки при прохождении пункта А? Если продолжительность затемнения в пункте В равна 0,10 сек, то чему равна скорость тележки а пункте В? Чему равно приращение скорости Δv? Если тележка проходит путь от А до В за 2,0 сек, то чему равно ее ускорение?


В задаче 5 ничего не говорится о том, что движение начинается из состояния покоя. Тележка, проходя мимо пункта А, находится в движении, и мы можем сообщить ей любой начальный толчок.

Таким образом, можно повторить эксперимент при самых различных начальных скоростях. Мы можем даже толкнуть тележку вверх так, чтобы, проходя первый раз мимо пункта А, она двигалась в обратном направлении; но при этом мы должны внимательно следить за знаками + и —. Измерения позволяют определить ускорение независимо от начальной скорости. Будет ли ускорение одинаково при различных начальных скоростях — это вопрос к самой природе. Чтобы ответить на него, вам придется принять участие в реальном опыте.

В условиях лаборатории вы сможете провести опыт с колесом, скатывающимся по наклонным направляющим. Измерить непосредственно ускорение или (возрастающую) скорость нелегко.

Вместо этого нужно измерить расстояние, пройденное от начала движения, и время движения, а затем проверить, удовлетворяют ли обе величины соотношению

ПРОЙДЕННОЕ РАССТОЯНИЕ ~ (ВРЕМЯ)>2.

Собрав надежные данные измерений, необходимо произвести проверку как арифметически, так и на графиках.


ОПЫТ С УСКОРЕННЫМ ДВИЖЕНИЕМ

Продолжим рассмотрение воображаемого движения с постоянным ускорением. Предположим, что измерения дали следующие результаты:



Эти измерения слишком малочисленны, кроме того, они сделаны через такие интервалы, что трудно произвести надлежащую проверку, но для иллюстрации их достаточно. Четыре значения: 5,1; 5,4; 5,0; 5,3 — это результаты четырех попыток измерить время прохождения расстояния 60 см. Случайные ошибки могут быть устранены усреднением полученных результатов, хотя часть ошибок все же может остаться, например ошибка, возникшая вследствие преждевременного выключения секундомера нетерпеливым экспериментатором. Усредним полученные данные, складывая их и деля на 4:

СРЕДНЕЕ ВРЕМЯ = (5,1 + 5,4 + 5,0 + 5,3)/4 = 20,8/4 = 5,2 сек

Поступая подобным же образом с другими промежутками времени, можно составить табл. 2[23].



Беглый взгляд на эти цифры показывает, что время не возрастает пропорционально пройденному расстоянию. График на фиг. 8, построенный по этим значениям, свидетельствует о том же самом. Он показывает, что тело движется все быстрее и быстрее, т. е. с ускорением.



Фиг. 8.Зависимость пройденного расстояния от времени.


Правда, глядя на этот график, сказать нельзя, постоянно ли ускорение[24]. Чтобы проверить это, построим другой график, который в случае постоянного ускорения будет иметь вид прямой линии. Какой график нужно строить, видно из предположения о постоянном ускорении и из дедуктивного отношения:

РАССТОЯНИЕ ~ (ВРЕМЯ)>2.

Отсюда следует, что нужно построить на графике зависимость пройденного расстояния от квадрата времени. В соответствии с этим составим табл. 3.



Затем построим график фиг. 9.



Фиг. 9.Зависимость пройденного расстояния от квадрата времени.


Чтобы проверить, постоянно ли ускорение, проведем через начало координат «наилучшую» прямую. Мы произвольно проводим для проверки прямую линию, но стараемся провести ее так, чтобы она проходила «как можно ближе к возможно большему числу» точек на графике.

В этом примере точки лежат близко к проведенной прямой. Если мы считаем, что отклонения точек от прямой объясняются несовершенством нашей аппаратуры, то мы говорим, что, насколько можно судить из проведенных измерений, движение происходит с постоянным ускорением.


Построение графика с указанием возможных ошибок опыта

Если мы желаем яснее обнаружить наличие погрешностей в полученных нами данных, мы можем превратить каждую наносимую на график точку в пятно и представить таким образом погрешности измерения в величине времени и расстояния (см. фиг. 10, а, где точки, отвечающие измеренным значениям, заменены пятнами, характеризующими погрешность результата).

Измерение времени менее надежно, чем измерение расстояния, поэтому каждое пятно размыто больше в ширину, чем в высоту.

Поскольку мы не знаем действительных значений ошибок наших опытов, а знаем лишь их вероятное значение, каждое пятно должно простираться на неопределенное расстояние от соответствующей точки. Однако мы должны указать, что внешние области пятна отвечают маловероятным ошибкам. Это можно было бы сделать, затушевав пятно, как показано на фиг. 10, б. Рисовать такое пятно — слишком утомительная процедура, поэтому обычно принято изображать ошибки прямоугольником определенного размера, таким, чтобы вероятность нахождения истинного значения в пределах прямоугольника имела какое-то стандартное значение, скажем


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.