Физика для любознательных. Том 1. Материя. Движение. Сила - [17]

Шрифт
Интервал

/>2. Размеры прямоугольника показывают при этом ошибки, которые, по мнению экспериментатора, могут иметь место.



Фиг. 10.Изображение ошибки на графиках.


Физики часто приводят ошибки или погрешности на графиках, но объединяют их и выражают погрешности величин, откладываемых на графике по горизонтали и по вертикали, в виде погрешности величины, откладываемой по вертикали. Экспериментатор оценивает вероятную ошибку Δy, допущенную им при измерении величины, откладываемой по вертикали. Он оценивает также вероятную ошибку Δх; величины, откладываемой по горизонтали, а затем задает вопрос: «Если я допустил такую ошибку Δх, то как велика при этом будет ошибка величины у, которая бы в точности ее учитывала?». Это дает ему значение Δy°, эквивалентное допущенной им ошибке Δх. Он проводит вертикальную прямую длиной (Δy + Δy°) с центром в экспериментальной точке. Тогда каждой точке, наносимой на график, будет соответствовать такое пятно, выражающее величину погрешности, как показано на фиг. 10, в.


Нахождение скорости при помощи касательных

Если бы мы могли построить график изменения скорости со временем, то это позволило бы непосредственно изучать ускорение.



Фиг. 11.Скорость равна наклону касательной.


Для этого необходимо оценить значение скорости в различные моменты времени.

Мы можем определить скорость, проводя касательные к кривой, описывающей зависимость пройденного расстояния от времени. Если провести касательную к кривой в некоторой точке, то наклон касательной даст скорость тела в данный момент времени и в данном месте. Чтобы убедиться в этом, выберем некоторую точку Р на этой кривой (фиг. 11), а затем переместимся вверх по кривой в точку Q, соответствующую более позднему моменту времени. Находясь в точке Р, тело уже прошло некоторое расстояние за какой-то промежуток времени. От Р до Q тело проходит еще небольшой отрезок пути Δs за малый промежуток времени Δt.

Тогда средняя скорость в интервале между Р и Q равна отношению

[РАССТОЯНИЕ, ПРОЙДЕННОЕ ОТ Р ДО Q]/[ВРЕМЯ ПЕРЕМЕЩЕНИЯ ОТ Р ДО Q]

или

СРЕДНЯЯ СКОРОСТЬ = Δs>PQt>PQ (см. фиг. 11, a),

= ВЫСОТА/ОСНОВАНИЕ МАЛОГО ТРЕУГОЛЬНИКА PQM,

= ВЫСОТА/ОСНОВАНИЕ ЛЮБОГО ТРЕУГОЛЬНИКА больших размеров, подобного треугольнику PQM,

= h/b на фиг. 11, а,

= наклон хорды, соединяющей точки Р и Q, или

ВЫСОТА/ОСНОВАНИЕ.

Если точки Р и Q расположены очень близко одна от другой, то соединяющая их линия почти совпадает с касательной к кривой в «точке» PQ, и скорость по-прежнему определяется наклоном этой «касательной». В пределе, как говорят в математике, когда точка Р приближается к Q, хорда превращается в касательную к кривой в этой точке; величины Δs и Δt становятся равными нулю, но отношение Δs/dt по-прежнему имеет вполне определенное значение, равное отношению h'/b' в любом треугольнике больших размеров, у которого касательная является гипотенузой, как на фиг. 11, б. Если PQ — хорда, то ее наклон определяет среднюю скорость движения от точки Р к точке Q. В пределе, когда Р и Q совпадают, наклон касательной определяет скорость в момент времени, соответствующий точке Р, в которой проводится касательная. Дело в том, что наклон касательной совпадает с наклоном бесконечно короткого отрезка кривой, характеризующего движение в данной точке. Проводя касательные во многих точках кривой и измеряя наклон этих касательных, мы могли бы определить несколько значений скорости, по которым можно было бы построить новый график, выражающий зависимость скорости от времени.

Форма этого графика позволила бы нам судить о том, постоянно ли ускорение, однако проведение касательных — дело не простое, и, чтобы с уверенностью делать выводы, пользуясь полученным набором значений наклона касательных, пришлось бы строить исходный график очень тщательно, с большим числом дополнительных точек. Поэтому на практике постоянство ускорения проверяют путем построения другого графика, выражающего зависимость расстояния от квадрата времени.

Однако мы можем воспользоваться указанным выше свойством касательной для построения первоначального графика. Хотя наш график, представленный на фиг. 8, проходит через начало координат, трудно судить о ходе кривой вблизи начала координат, поскольку измерять очень короткие перемещения сложно. Мы не можем с уверенностью сказать, какая из трех представленных на фиг. 12 кривых верна.



Фиг. 12.Различные варианты графика фиг. 8, изображающего зависимость пройденного расстояния от времени.


Мы можем выяснить это, рассуждая следующим образом: согласно полученным данным, тело начало двигаться из состояния покоя. Следовательно, начальная скорость тела равна нулю. Поэтому наклон касательной к кривой в начале координат должен быть равен нулю, касательная должна быть расположена горизонтально. Отсюда можно заключить, что из трех кривых фиг. 12 верна, по-видимому, средняя.


Арифметическая проверка постоянства ускорения

Результаты нашего мысленного опыта можно еще проверить с помощью арифметического расчета. Если ускорение постоянно, то

РАССТОЯНИЕ = (ПОСТОЯННАЯ)∙(ВРЕМЯ)>2.

Поэтому расстояние/(время)>2 = const. И наоборот, если отношение (


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.