Физика для любознательных. Том 1. Материя. Движение. Сила - [17]
Фиг. 10.Изображение ошибки на графиках.
Физики часто приводят ошибки или погрешности на графиках, но объединяют их и выражают погрешности величин, откладываемых на графике по горизонтали и по вертикали, в виде погрешности величины, откладываемой по вертикали. Экспериментатор оценивает вероятную ошибку Δy, допущенную им при измерении величины, откладываемой по вертикали. Он оценивает также вероятную ошибку Δх; величины, откладываемой по горизонтали, а затем задает вопрос: «Если я допустил такую ошибку Δх, то как велика при этом будет ошибка величины у, которая бы в точности ее учитывала?». Это дает ему значение Δy°, эквивалентное допущенной им ошибке Δх. Он проводит вертикальную прямую длиной (Δy + Δy°) с центром в экспериментальной точке. Тогда каждой точке, наносимой на график, будет соответствовать такое пятно, выражающее величину погрешности, как показано на фиг. 10, в.
Нахождение скорости при помощи касательных
Если бы мы могли построить график изменения скорости со временем, то это позволило бы непосредственно изучать ускорение.
Фиг. 11.Скорость равна наклону касательной.
Для этого необходимо оценить значение скорости в различные моменты времени.
Мы можем определить скорость, проводя касательные к кривой, описывающей зависимость пройденного расстояния от времени. Если провести касательную к кривой в некоторой точке, то наклон касательной даст скорость тела в данный момент времени и в данном месте. Чтобы убедиться в этом, выберем некоторую точку Р на этой кривой (фиг. 11), а затем переместимся вверх по кривой в точку Q, соответствующую более позднему моменту времени. Находясь в точке Р, тело уже прошло некоторое расстояние за какой-то промежуток времени. От Р до Q тело проходит еще небольшой отрезок пути Δs за малый промежуток времени Δt.
Тогда средняя скорость в интервале между Р и Q равна отношению
[РАССТОЯНИЕ, ПРОЙДЕННОЕ ОТ Р ДО Q]/[ВРЕМЯ ПЕРЕМЕЩЕНИЯ ОТ Р ДО Q]
или
СРЕДНЯЯ СКОРОСТЬ = Δs>PQ/Δt>PQ (см. фиг. 11, a),
= ВЫСОТА/ОСНОВАНИЕ МАЛОГО ТРЕУГОЛЬНИКА PQM,
= ВЫСОТА/ОСНОВАНИЕ ЛЮБОГО ТРЕУГОЛЬНИКА больших размеров, подобного треугольнику PQM,
= h/b на фиг. 11, а,
= наклон хорды, соединяющей точки Р и Q, или
ВЫСОТА/ОСНОВАНИЕ.
Если точки Р и Q расположены очень близко одна от другой, то соединяющая их линия почти совпадает с касательной к кривой в «точке» PQ, и скорость по-прежнему определяется наклоном этой «касательной». В пределе, как говорят в математике, когда точка Р приближается к Q, хорда превращается в касательную к кривой в этой точке; величины Δs и Δt становятся равными нулю, но отношение Δs/dt по-прежнему имеет вполне определенное значение, равное отношению h'/b' в любом треугольнике больших размеров, у которого касательная является гипотенузой, как на фиг. 11, б. Если PQ — хорда, то ее наклон определяет среднюю скорость движения от точки Р к точке Q. В пределе, когда Р и Q совпадают, наклон касательной определяет скорость в момент времени, соответствующий точке Р, в которой проводится касательная. Дело в том, что наклон касательной совпадает с наклоном бесконечно короткого отрезка кривой, характеризующего движение в данной точке. Проводя касательные во многих точках кривой и измеряя наклон этих касательных, мы могли бы определить несколько значений скорости, по которым можно было бы построить новый график, выражающий зависимость скорости от времени.
Форма этого графика позволила бы нам судить о том, постоянно ли ускорение, однако проведение касательных — дело не простое, и, чтобы с уверенностью делать выводы, пользуясь полученным набором значений наклона касательных, пришлось бы строить исходный график очень тщательно, с большим числом дополнительных точек. Поэтому на практике постоянство ускорения проверяют путем построения другого графика, выражающего зависимость расстояния от квадрата времени.
Однако мы можем воспользоваться указанным выше свойством касательной для построения первоначального графика. Хотя наш график, представленный на фиг. 8, проходит через начало координат, трудно судить о ходе кривой вблизи начала координат, поскольку измерять очень короткие перемещения сложно. Мы не можем с уверенностью сказать, какая из трех представленных на фиг. 12 кривых верна.
Фиг. 12.Различные варианты графика фиг. 8, изображающего зависимость пройденного расстояния от времени.
Мы можем выяснить это, рассуждая следующим образом: согласно полученным данным, тело начало двигаться из состояния покоя. Следовательно, начальная скорость тела равна нулю. Поэтому наклон касательной к кривой в начале координат должен быть равен нулю, касательная должна быть расположена горизонтально. Отсюда можно заключить, что из трех кривых фиг. 12 верна, по-видимому, средняя.
Арифметическая проверка постоянства ускорения
Результаты нашего мысленного опыта можно еще проверить с помощью арифметического расчета. Если ускорение постоянно, то
РАССТОЯНИЕ = (ПОСТОЯННАЯ)∙(ВРЕМЯ)>2.
Поэтому расстояние/(время)>2 = const. И наоборот, если отношение (

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Жизнь физика, историка науки и крупного научного администратора Сергея Ивановича Вавилова (1891–1951) необычна. Возможно, при взгляде из XXI века уже не слишком значительными покажутся и его научные достижения, и его героическая, подвижническая деятельность в качестве президента Академии наук (которая к тому же пришлась на годы позорного разгрома генетики и других подобных идеологических кампаний). Однако недавно впервые опубликованный личный дневник, который академик Вавилов тайно вел на протяжении долгих лет, открывает новое удивительное измерение его интеллектуальной жизни.

Стивен Хокинг — один из самых известных физиков современности. Ему принадлежало множество работ по теории черных дыр, квантовой космологии и теории относительности. Широкой общественности он был хорошо известен как блестящий популяризатор науки. Кроме того, британский ученый являл собой пример личного мужества, полстолетия сражаясь с ужасным недугом, парализовавшим все тело. Весной 2018 года выдающийся ученый навсегда покинул нашу планету, затерявшись где-то в бесконечных измерениях так любимого им многомирья Мультиверса.

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.