Евклидово окно - [72]

Шрифт
Интервал

В письме Эйнштейн нашел предложение, как можно объединить электромагнитные силы с гравитационными. У этой теории была одна маленькая странность. Эйнштейн написал в ответ: «Идея создания[285] посредством пятимерного цилиндрического мира никогда не приходила мне в голову…»[286] Пятимерный цилиндр? Да кому вообще такое могло прийти в голову? Никто не знает, как Калуца до этого додумался, однако Эйнштейн в том же письме добавил: «Мне чрезвычайно симпатична ваша мысль». Сейчас нам понятно, что Калуца обогнал время, однако пожадничал измерений.

Мы уже видели, что общая теория относительности описывала, как материя влияет на пространство через метрику, чьи компоненты — g — факторы — сообщают, как именно измерять расстояние между соседними точками на основании разности их координат. Количество g — факторов зависит от количества измерений пространства. Например, в трехмерном пространстве их шесть. В плоском расстояние равно (разница между координатами х )2 + (разница между координатами у )2 + (разница между координатам z )2, т. е. g xx , g yy и g zz все равны 1, а факторы, соответствующие перекрестным — g xy, g yz и g xz — все равны нулю и их нет в уравнении. В четырехмерном неевклидовом пространстве из общей теории относительности выходит десять независимых g — факторов (принимая во внимание равенства типа g xy = g yx ), все они описываются уравнениями Эйнштейна. Калуца сначала осознал вот что: если взять пять измерений, возникнут еще g — факторы, отвечающие дополнительному измерению.

Далее Калуца задался вопросом: если формально расширить эйнштейново поле до пяти измерений, какие уравнения получатся для дополнительных g-факторов? Ответ ошеломительный: выходят уравнения Максвелла для электромагнитного поля! Начиная с пятого измерения электромагнетизм вдруг возникает в теории гравитации. Эйнштейн писал: «Формальное единство вашей теории поразительно»[287].

Конечно, интерпретация метрики дополнительного измерения как физического электромагнитного поля требует некоторой возни с теорией. И что там, кстати, с той самой маленькой странностью — дополнительным измерением? Калуца утверждал, что оно конечно по длине, а еще точнее — такое маленькое, что мы бы и его и не заметили, даже если бы сами копошились внутри. Сверх того Калуца заявил, что новое измерение имеет новую топологию: в ней вместо прямой — окружность, т. е. оно замыкается на себе, свертывается (и поэтому, в отличие от конечной прямой, концов не имеет). Представьте Пятую авеню с нулевой шириной — в виде простой линии. В новом измерении Калуцы пересекающие ее улицы превратятся в окружности, прорезывающиеся из Пятой авеню. Разумеется, пересекающие улицы возникают с интервалом в квартал, но дополнительное измерение есть в каждой точке вдоль авеню. Таким образом если добавить линии новое измерение, она не обрастет окружностями, а превратится в цилиндр наподобие садового шланга. Только очень тонкого.

По сути, Калуца утверждал, что гравитация и электромагнетизм на самом деле суть компоненты одного и того же, но выглядят по-разному потому, что мы наблюдаем некоторое усредненное неощутимое движение крошечного четвертого пространственного измерения. Эйнштейн сомневался в теории Калуцы, однако чуть погодя все же передумал и в 1921 году помог Калуце опубликовать его теорию.

В 1926-м Оскар Клейн, ассистент профессора в Университете Мичигана, независимо от Калуцы предложил ту же теорию, но с некоторыми усовершенствованиями. Одно из них — осознание, что эта теория приводит к верным уравнениям движения частиц, если в этом загадочном пятом измерении частица имеет определенные значения импульса. Эти «разрешенные» значения оказались кратны определенному минимальному импульсу. Если допустить, как это сделал Калуца, что пятое измерение замкнуто на само себя, можно применять квантовую теорию для того, чтобы рассчитать из минимального импульса возможное значение «длины» этого свернутого пятого измерения. Если бы вдруг выяснилось, что измерение это — обозримого, макроскопического размера, теория оказалась бы под угрозой, поскольку мы этого измерения никак не наблюдаем. Но получился размер 10–30 сантиметра. Без проблем. Измерение скрыто от глаз будь здоров.

Теория Клейна-Калуцы намекала на формальную связь между теориями, но не на структуру, которая тут же предоставляла нечто совершенно новое. Следующие несколько лет физики искали другие предсказания, какие могла бы дать эта теория, — примерно в том же ключе, в каком Клейн рассуждал о размерах нового измерения. Им удалось найти новые доводы, которые вроде бы подразумевали, что с ее помощью можно предсказывать соотношение массы электрона и его заряда. Однако результат предсказания сильно расходился с реальностью. Где-то на полпути между этим затруднением и странным предсказанием пятого измерения физики охладели к новой теории. Эйнштейн в последний раз вернулся к ней в 1938 году.

Калуца, умерший за год до Эйнштейна, так почти и не продвинулся далее. Но кое-что с его неоперившейся теории ему по-крупному перепало. Когда он писал Эйнштейну, ему было 34 и он уже десять лет содержал семью на жалованье приват-доцента (примерный аналог ассистента профессора) в Кёнигсберге. Это самое жалованье лучше всего описывается в терминах дорогой его сердцу математики: за каждый семестр он получал 5 раз по


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.