Есть идея! - [66]
Как и две предыдущие задачи, эта головоломка легко решается, если догадаться обратить последовательность операций. Возьмите всю стопку отобранных карт в левую руку и держите вверх, рубашкой. Найдите короля и подложите под стопку снизу. Затем найдите даму (12 очков), подложите под стопку снизу и, отсчитав снизу 12 карт, перенесите их в том же порядке, в каком они лежали в стопке, снизу наверх. Найдите валета (11 очков), подложите его под стопку снизу, я, отсчитав 11 карт снизу, перенесите их наверх Эта процедура, которую необходимо продолжать, пока вы не дойдете до туза, представляет собой не что иное, как обращение процедуры Иосифа Флавия. Закончив манипуляции, вы получите стопку с картами, разложенными в нужном порядке.
«Счет» Иосифа Флавия не обязательно ограничивать последовательными числами. Описанная нами процедура позволяет подготовить стопку карт для счета Флавия с произвольными числами, расположенных в каком угодно порядке!
Продемонстрировать это можно с помощью следующего карточного фокуса, для которого нам понадобится та же стопка из 13 карт пиковой масти. Вместо того чтобы считать, будем называть по буквам каждую карту, перенося по одной карте сверху вниз на каждой букве. Карты в стопке должны быть уложены в следующем порядке (сверху-вниз): дама, четверка, туз, восьмерка, король, двойка, семерка, пятерка, десятка, валет, тройка, шестерка, девятка. Вы произносите Т — У — З, перенося по одной карте сверху вниз на каждой букве. На букве З вы поворачиваете карту вверх лицом и показываете всем, что это туз. Отложив туз в сторону, вы произносите затем Д — В — А и продолжаете так до тех пор, пока не назовете вслух по буквам все 13 карт.
Начальное расположение карт в стопке получается с помощью уже описанной нами процедуры обращения последовательности операций. Эта же процедура позволяет подготовить для демонстрации фокуса полную колоду в 52 листа даже в том случае, если вы будете произносить название каждой карты по буквам полностью, например, Т — У — 3 — П — И — К, и показывать их зрителям в заранее объявленной последовательности мастей, например в последовательности: пики, черви, трефы и бубны.
«Счет» Иосифа Флавия как процедура обладает такой общностью, что позволяет произносить по буквам любые слова, например названия знаков зодиака, — фамилии знаменитостей и т. д. Процедура обращения последовательности операций позволяет вам в любом случае подготовить колоду к безотказной демонстрации фокуса: какие бы слова вы ни выбрали, с последней буквой каждого слова у вас в руках неизменно будет оказываться нужная карта.
Глава 4. Логические находки
1. Посетитель ресторана успел посолить суп прежде, чем заметил муху.
2. Вода никогда не достигнет иллюминатора, так как вместе с приливом поднимается и судно.
3. Река Гудзон покрылась льдом у берега, и на него-то и ступил преподобный Сол Луни.
4. Один поезд влетел в туннель с одной стороны, а через час, когда первый поезд был уже далеко, в туннель с противоположной стороны на полной скорости влетел другой поезд.
5. Когда показалась полицейская машина, беглый преступник находился у конца большого моста. Прежде чем попытаться скрыться в лесу, ему пришлось пробежать 10 м по мосту навстречу полиции.
6. Потому, что сумма в 1977 долларов на 1 доллар больше суммы в 1976 долларов.
Если вам когда-нибудь приходилось иметь дело с кассетным магнитофоном, то вы поймете, что если бы Джонс остановил запись, когда Смит вошел в комнату, то лента не была бы перемотана. Истинный убийца несколько раз прослушал запись, чтобы убедиться в правдоподобности звучания, а затем совершил роковую ошибку, перемотав ленту.
1. Чтобы картонная спичка упала на ребро, ее нужно согнуть посредине.
2. Нужно осторожно подсыпать песок в канал до тех пор, пока он не наполнится доверху.
3. Сделайте на нити небольшую петлю, завязав ее у основания, после чего перережьте петлю сбоку.
4. Отрезок шеста длиной в 20 см имеет продольное сечение в форме прямоугольника 20 см × 5 см, и, следовательно, им можно плотно заделать брешь в плотине.
5. Измерьте линейкой внутренний диаметр бутылки и уровень жидкости в ней. Столб жидкости имеет форму цилиндра, поэтому объем его вычисляется без труда. Переверните затем бутылку. Находящийся в ней воздух образует другой цилиндр, объем которого вы также легко измерите. Сумма объемов даст вам полный объем бутылки, после чего не составит никакого труда вычислить, какую часть объема занимает жидкость.
1. Сообразительный гонщик предложил всем участникам заезда обменяться машинами, после чего гонка проходила, как обычно: по условию, приз выигрывал тот, чья машина придет последней. О том, чтобы гонщик был последним на финише, ничего не говорилось.
2. Достаточно поднести горящую спичку снизу к стакану с водой.
3. Действие происходило в кинотеатре, где зрители смотрят картины, не вылезая из своих машин.
4. Для этого проф. Квибблу достаточно выйти в другую комнату и, встав на четвереньки, «вползти» обратно.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.