Есть идея! - [63]
Существуют и всевозможные усложненные варианты. Например, одно предложение может быть скрыто в другом, вполне осмысленном. Для проявления «скрытого изображения» часть букв необходимо зачеркнуть. Особого искусства требует составление тройной фразы с «двойным дном», в которой осмысленные предложения образуют все буквы, зачеркнутые буквы и буквы, оставшиеся после зачеркивания. Приведем арифметический аналог такой тройной фразы: 15 + 11 = 26. Последние цифры порождают равенство 5 + 1 = 6, после их вычеркивания остается равенство 1 + 1 = 2. Возможно, вам удастся придумать более сложные примеры.
Прямые люди
Проф. Слог. Ваше первое задание, мистер Рите, связано с этой таблицей, на которой выписаны четыре имени. Приз за успешное выполнение задания — 6 коробок превосходных кубинских сигар.
Проф. Слог. Проведя 3 линии, мы легко можем разделить таблицу на 4 графы так, чтобы в каждой из них было вписано только 1 имя. Нельзя ли добиться того же с помощью 2, а не 3 линий?
Мистер Рите молча попыхивал сигарой, пока его время не истекло.
Мистер Рите. Этого сделать нельзя!
Проф. Слог. Вы заблуждаетесь, мистер Рите. Задача решается очень просто. Должно быть, сигарный дым затуманил ясность вашего мышления.
Задача проф. Слога решается сразу, стоит лишь догадаться, что каждое имя можно разбить на две части, а из «осколков», комбинируя их в других сочетаниях, составить те же четыре имя.
Идея разбиения на части прямыми встречается и во многих других головоломках. Обычно речь идет о том, чтобы несколькими прямыми разделить ту или иную картинку на части, каждая из которых содержала бы лишь одну деталь. Типичная головоломка такого рода изображена на рис. 4. Можете ли вы провести 3 прямые так, чтобы каждый кружок оказался отрезанным от всех остальных? Решение оказывается неожиданно простым, если догадаться, что части, на которые рассекают квадрат 3 прямые, не обязательно должны быть прямоугольниками и что 3 прямыми квадрат можно разделить на 7 частей.
Интересные варианты той же идеи возникают, если вместо кружков взять числа. Требуется разделить квадрат прямыми на части так, чтобы в каждой части числа обладали каким-нибудь общим отличительным свойством. Свое искусство в решении задач этого типа вы можете испытать на следующей головоломке (рис. 5). Требуется провести 4 прямые так, чтобы они разделили квадрат на 11 частей и сумма чисел в каждой части была равна 10. Решение этой задачи приведено в конце книги.
Невразумительное объявление
Проф. Слог. Даю вам еще один шанс выиграть 6 коробок сигар. В одном городке на витрине небольшой гостиницы с рестораном красовался такой плакат.
Проф. Слог. Но когда несовершеннолетние юнцы зашли в ресторан и потребовали спиртные напитки, их вышвырнули вон.
Проф. Слог. По словам владельца гостиницы, художник, написавший плакат, пропустил два восклицательных знака. Расставьте их так, чтобы текст плаката обрел тот смысл, который хотел вложить в него хозяин гостиницы, человек строгих правил и безупречной репутации.
Мистер Рите не справился и с этим заданием. Проф. Слогу пришлось самому расставить восклицательные знаки.
Во многих старинных сборниках забав и развлечений можно найти примеры фраз, смысл которых существенно зависит от того, как расставлены знаки препинания. Вспомним хотя бы знаменитый пример с телеграммой «КАЗНИТЬ НЕЛЬЗЯ ПОМИЛОВАТЬ». От того, где должна стоять пропущенная телеграфистом точка, зависит судьба осужденного.
Головоломки этого типа также имеют многочисленные арифметические аналоги. Взять хотя бы следующее неверное равенство:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 100.
Как сделать его верным, изменив «пунктуацию» в левой части (то есть расставив по-другому плюсы и минусы и, возможно, убрав или добавив пробелы между цифрами)? Одно из возможных решений, использующее только три знака, имеет вид:
123 − 45 − 67 + 89 = 100.
Другое решение потребовало больше плюсов и лишь один минус:
1 + 2 + 3 − 4 + 5 + 6 + 78 + 9 = 100.
Существует всего лишь девять решений:
123 − 45 − 67 + 89 = 100,
123 + 4 − 5 + 67 − 89 = 100,
123 + 45 − 67 + 8 − 9 = 100,
123 − 4 − 5 − 6 − 7 + 8 − 9 = 100,
12 − 3 − 4 + 5 − 6 + 7 + 89 = 100,
12 + 3 + 4 + 5 − 6 − 7 + 89 = 100,
1 + 23 − 4 + 5 + 6 + 78 − 9 = 100,
1 + 2 + 34 − 5 + 67 − 8 + 9 = 100,
12 + 3 − 4 + 5 + 67 + 8 + 9 = 100,
1 + 23 − 4 + 56 + 7 + 8 + 9 = 100,
1 + 2 + 3 − 4 + 5 + 6 + 78 + 9 = 100.
Ту же задачу можно поставить несколько иначе, если потребовать, чтобы цифры шли не в порядке возрастания, а в порядке убывания. Если исключить (как мы делали в предыдущей, задаче) случай, когда знак минус стоит перед первым числом, то задача допускает всего 15 решений:
98 − 76 + 54 + 3 + 21 = 100,
9 − 8 + 7 − 6 − 1 − 54 − 32 + 1 = 100,
98 − 7 − 6 − 5 − 4 + 3 + 21 = 100,
9 − 8 + 7 + 65 − 4 + 32 − 1 = 100,
9 − 8 + 76 − 5 + 4 + 3 + 21 = 100,
98 − 7 + 6 + 5 + 4 − 3 − 2 − 1 = 100,
98 + 7 − 6 + 5 − 4 + 3 − 2 − 1 = 100,
98 + 7 + 6 − 5 − 4 − 3 + 2 − 1 = 100,
98 + 7 − 6 + 5 − 4 − 3 + 2 + 1 = 100,
98 − 7 + 6 + 5 − 4 + 3 − 2 + 1 = 100,
98 − 7 + 6 − 5 + 4 + 3 + 2 − 1 = 100,
98 + 7 − 6 − 5 + 4 + 3 − 2 + 1 = 100,
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
«Умение математиков заглядывать в будущее наделило тех, кто понимает язык чисел, огромным могуществом. От астрономов древних времен, способных предсказать движения планет в ночном небе, до сегодняшних управляющих хедж-фондами, прогнозирующих изменения цен на фондовом рынке, – все они использовали математику, чтобы постичь будущее. Сила математики в том, что она может гарантировать стопроцентную уверенность в свойствах мира». Маркус дю Сотой Профессор математики Оксфордского университета, заведующий кафедрой Симони, сменивший на этой должности Ричарда Докинза, Маркус дю Сотой приглашает вас в незабываемое путешествие по необычным и удивительным областям науки, лежащей в основе каждого аспекта нашей жизни. В формате pdf A4 сохранен издательский дизайн.
Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.